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Aim of the Study

Some points for the motivation:

I Interest to investigate a complex problem which has a big
importance to the health state of an individual

I Deformability properties of RBCs (and other cells) is currently
not clinically used

I Develop miniaturised diagnosis devices (e.g. lab-on-chip,
lab-on-CD), and devices for cell separation

I Blood test is a common checkup (cheap and not very invasive)

Approach:

Investigate RBC deformability through in-vitro experiments (under
a confocal microscope) and computational simulations (using
Lagrangian particle method - MPS).
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Example of Experimental Results

Figure : Single RBC flow in a capilary under different flow rates. (NB.
flow is right to left)
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Example of Experimental Results

Figure : Flow through constrictions. (NB. flow is right to left)

4 / 24



Image processing

original Perona-Malik Novel approach

Figure : Developed automatic image processing methods for filtering,
contrast enhancement and segmentation.
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The Moving Particle Semi-implicit method (MPS):

I mesh-free Lagrangian particle method

I solves Navier-Stokes equations for an incompressible fluid

1
ρ
Dρ
Dt +∇ · u = 0 ; Du

Dt = −∇Pρ + ν∇2u + f

it works by:

I nodal interpolation: compact support radial function

I derivatives in the Navier-Stokes equations are substituted by
discrete operators (strong formulation)

I is a predictor - corrector method (projection method)
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Compact support and weight function

The particle interactions are restricted to within a finite radius re .

The weighting (shape)
function is: w(r) =

{
re
r − 1 0 < r < re

0 re < r

A scalar variable φ at
any point i is given by: φi =

1∑N
j=1 w(rij)

N∑
j=1

w(rij)φj

Figure : Example of particle compact support and weight function.
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Incompressibility

I each particle represents a lumped volume of fluid

I idea is therefore to keep a constant distribution of particles

Introduce the particle number density at position i as:

ni =
N∑
j 6=i

w(rij)

where N = number of particles; rij = distance between particles i and j .

For incompressible flows this number should be constant = n0.

We note that ρi ∝ ni .
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Time stepping

MPS is a predictor-corrector method: un+1
i = u∗i + u∗∗i , where ∗

and ∗∗ denote the predictor and corrector stages, and
xn+1
i = xni + ∆t · un+1

i .

The momentum equation
(

Du
Dt = −∇P

ρ + ν∇2u + f
)

Du

Dt
=

un+1 − un

∆t
=

u∗∗ + (u∗ − un)

∆t
= −∇p

ρ
+ (f + ν∇2u)

predictor : u∗ = un+∆t(f+ν∇2u) ; corrector : u∗∗ = −∆t

ρ
∇p

The continuity equation
(

1
ρ
Dρ
Dt +∇ · u = 0

)
1

ρ

Dρ

Dt
=
ρn+1 − ρn

ρ∆t
=
ρ∗∗ + (ρ∗ − ρn)

ρ∆t
= −∇ · (u∗∗ + u∗)

predictor :
1

ρ

ρ∗ − ρn

∆t
= −∇·u∗ ; corrector :

1

ρ

ρ∗∗

∆t
= −∇·u∗∗
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Time stepping

(from previous slide)

predictor : u∗ = un + ∆t(f + ν∇2u) ; corrector : u∗∗ = −∆t

ρ
∇p

predictor :
1

ρ

ρ∗ − ρn

∆t
= −∇ · u∗ ; corrector :

1

ρ

ρ∗∗

∆t
= −∇ · u∗∗

For incompressibility Dρ
Dt = 0, hence n0 = n∗ + n∗∗.

Since ρ ∝ n; 1
ρ
ρ∗∗

∆t = 1
n0

n∗∗

∆t = −∇ · u∗∗.

Substitution in u∗∗ = −∆t
ρ ∇p we obtain ∇2p = −ρ

∆t2
n∗−n0

n0

10 / 24



Summary of method

Step Equation
predictor stage u∗ = un + ∆t(f) + ∆t(ν∇2u∗)

x∗i = xni + ∆t · u∗i

compute pressure ∇2p = −ρ
∆t2

(n∗−n0)
n0

corrector stage un+1 = u∗ + u∗∗ = u∗ − ∆t
ρ ∇p

n+1

xn+1
i = xni + ∆t · un+1

i
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Differential operators

The gradient in MPS is given by:

∇φi =
d

n0

N∑
j 6=i

w(rij)
(φj − φi )(xj − xi )

|xj − xi |2

while the Laplacian is modelled as:

∇2φi =
2d

λn0

N∑
j 6=i

w(rij)(φj − φi )

where: λ =
∑N

j 6=i w(rij )r
2
ij∑N

j 6=i w(rij )
;

d = 3 in 3D and d = 2 in 2D.
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Summary of method

Step Equation

predictor stage u∗i = uni + ∆t
(
ν 2d
λn0

(∑N
j 6=i w(rij)(u∗j − u∗i )

)
+ f
)

r∗i = rni + ∆t · u∗i

particle number n∗i =
∑N

j 6=i w(rij)

pressure
∑N

j 6=i

(
w(rij)P

n+1
j

)
− Pn+1

i

(∑N
j 6=i w(rij)

)
= −ρλ(n∗i −n

0)
∆t22d

pressure gradient ∇Pn+1
i = d

n∗i

∑N
j 6=i w(rij)(Pn+1

j − (Pn+1
i ))

(rj−ri )
|rij |2

corrector stage un+1
i = u∗i −∆t 1

ρ∇P
n+1
i

rn+1
i = rni + ∆t · un+1

i
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Modelling RBCs

In simulating blood in small vessels, the constitutive components
(i.e. the cells) must be modelled .

The approach is to use a spring network model for the membranes:

I tension/compression spring
I bending spring
I penalisation force (e.g. area and volume constraints)

Springs act as body force terms in the predictor stage.

Figure : Red blood cell membrane spring network model.
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Results: Different structural parameters

Figure : Discretisation of the domain and red blood cells.
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Testing different spring stiffness coefficients

at rest 9.6 µNm 12.8 µNm 16.0 µNm

Figure : Testing static stretching with 100 pN force, Kb= 3.2× 10−11 N.
.
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Results of flow simulations

∆p = 12.1 Pa,
diameter=7.8µm relative velocity in two orthogonal planes

∆p = 20 Pa,
diameter=6µm relative velocity in two orthogonal planes

Figure : RBC flowing in a constricted vessel, showing cross sections of
the relative velocity (u′ = u − u). 17 / 24



Results of flow simulations

Figure : RBC flowing in small vessel - modelling endothelial cells.
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Results: RBCs in straight pipe

(1) (2)

(3) (4)

Figure : Experiment of RBC flowing in small constriction.
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Results of flow simulations

Simulations in a RBC flowing in model capillary .
discontinuous constriction network of the retina
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Conclusions and Future Work

Conclusion:

I can perform RBC tracking of experimental data;

I can simulate blood flow in capillaries;

I can compare with some benchmark studies.

Future Work:

I more benchmark studies;

I model cell adhesion;

I model cell hemolysis;

I observe cell migration in relation to the flow field;

I use simulation to develop devices for studying patient specific
properties;
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Gradient operator

Given a scalar quantity φ, the gradient vector for particles at

positions xi and xj is: ∇φij =
(φj−φi )
|xj−xi | ·

(xj−xi )
|xj−xi |

The gradient in MPS, where there are several neighbouring
particles j and an interpolation is performed using the weight
function, is written as:

∇φi =
d

n0

N∑
j 6=i

w(rij)
(φj − φi )(xj − xi )

|xj − xi |2

where d is the number of space dimensions, hence d = 3 in 3D
and d = 2 in 2D.
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Laplacian operator

The Laplacian is modelled as diffusion problem: dφ
dt = α∇2φ with

α > 0.

For an initial condition of a point source of unit magnitude, the

solution is given by φ(x , t) =
(

1√
4παt

)d
exp

(
− r2

4αt

)
, hence a

normal distribution with mean = 0 and variance = 2dαt.

The variance distribution of φ increases by 2dα∆t during time
step ∆t. Therefore the quantity transferred from particle i to the
neighbouring particles should have the same variance increase:
∆φi→j = 2dα∆t

λn0 φiw(rij)

A normalisation appears due to the discretisation λ =
∑N

j 6=i w(rij )r
2
ij∑N

j 6=i w(rij )
.

Putting it all together: ∇2φi = 2d
λn0

∑N
j 6=i w(rij)(φj − φi )
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