Computational micro-hemodynamics

Alberto M. Gambaruto
Computer Applications in Science and Engineering, Barcelona Supercomputing Center,
Spain,

alberto.gambaruto@bsc.es

Workshop on PDE's and Biomedical Applications, December 4-6, 2014, Lisboa

Aim of the Study

Some points for the motivation:

- Interest to investigate a complex problem which has a big importance to the health state of an individual
- Deformability properties of RBCs (and other cells) is currently not clinically used
- Develop miniaturised diagnosis devices (e.g. lab-on-chip, lab-on-CD), and devices for cell separation
- Blood test is a common checkup (cheap and not very invasive)

Approach:

Investigate RBC deformability through in-vitro experiments (under a confocal microscope) and computational simulations (using Lagrangian particle method - MPS).

Example of Experimental Results

Figure: Single RBC flow in a capilary under different flow rates. (NB. flow is right to left)

Example of Experimental Results

Figure: Flow through constrictions. (NB. flow is right to left)

Image processing

original

Perona-Malik

Novel approach

Figure : Developed automatic image processing methods for filtering, contrast enhancement and segmentation.

The Moving Particle Semi-implicit method (MPS):

- mesh-free Lagrangian particle method
- solves Navier-Stokes equations for an incompressible fluid

$$
\frac{1}{\rho} \frac{D \rho}{D t}+\nabla \cdot \mathbf{u}=0 \quad ; \quad \frac{D \mathbf{u}}{D t}=-\frac{\nabla P}{\rho}+\nu \nabla^{2} \mathbf{u}+\mathbf{f}
$$

it works by:

- nodal interpolation: compact support radial function
- derivatives in the Navier-Stokes equations are substituted by discrete operators (strong formulation)
- is a predictor - corrector method (projection method)

Compact support and weight function

The particle interactions are restricted to within a finite radius r_{e}.

The weighting (shape) function is:

$$
w(r)= \begin{cases}\frac{r_{e}}{r}-1 & 0<r<r_{e} \\ 0 & r_{e}<r\end{cases}
$$

A scalar variable ϕ at any point i is given by:

$$
\phi_{i}=\frac{1}{\sum_{j=1}^{N} w\left(r_{i j}\right)} \sum_{j=1}^{N} w\left(r_{i j}\right) \phi_{j}
$$

Figure : Example of particle compact support and weight function.

Incompressibility

- each particle represents a lumped volume of fluid
- idea is therefore to keep a constant distribution of particles

Introduce the particle number density at position i as:

$$
n_{i}=\sum_{j \neq i}^{N} w\left(r_{i j}\right)
$$

where $N=$ number of particles; $r_{i j}=$ distance between particles i and j.

For incompressible flows this number should be constant $=n^{0}$.

We note that $\rho_{i} \propto n_{i}$.

Time stepping

MPS is a predictor-corrector method: $\mathbf{u}_{i}^{n+1}=\mathbf{u}_{i}^{*}+\mathbf{u}_{i}^{* *}$, where * and ${ }^{* *}$ denote the predictor and corrector stages, and
$\mathbf{x}_{i}^{n+1}=\mathbf{x}_{i}^{n}+\Delta t \cdot \mathbf{u}_{i}^{n+1}$.
The momentum equation $\left(\frac{D u}{D t}=-\frac{\nabla P}{\rho}+\nu \nabla^{2} \mathbf{u}+\mathbf{f}\right)$

$$
\frac{D \mathbf{u}}{D t}=\frac{\mathbf{u}^{n+1}-\mathbf{u}^{n}}{\Delta t}=\frac{\mathbf{u}^{* *}+\left(\mathbf{u}^{*}-\mathbf{u}^{n}\right)}{\Delta t}=-\frac{\nabla p}{\rho}+\left(\mathbf{f}+\nu \nabla^{2} \mathbf{u}\right)
$$

predictor : $\mathbf{u}^{*}=\mathbf{u}^{n}+\Delta t\left(\mathbf{f}+\nu \nabla^{2} \mathbf{u}\right) \quad ; \quad$ corrector : $\quad \mathbf{u}^{* *}=-\frac{\Delta t}{\rho} \nabla p$
The continuity equation $\left(\frac{1}{\rho} \frac{D \rho}{D t}+\nabla \cdot \mathbf{u}=0\right)$

$$
\frac{1}{\rho} \frac{D \rho}{D t}=\frac{\rho^{n+1}-\rho^{n}}{\rho \Delta t}=\frac{\rho^{* *}+\left(\rho^{*}-\rho^{n}\right)}{\rho \Delta t}=-\nabla \cdot\left(\mathbf{u}^{* *}+\mathbf{u}^{*}\right)
$$

predictor : $\frac{1}{\rho} \frac{\rho^{*}-\rho^{n}}{\Delta t}=-\nabla \cdot \mathbf{u}^{*} \quad ; \quad$ corrector : $\frac{1}{\rho} \frac{\rho^{* *}}{\Delta t}=-\nabla \cdot \mathbf{u}^{* *}$

Time stepping

(from previous slide)

$$
\begin{array}{ll}
\text { predictor : } \quad \mathbf{u}^{*}=\mathbf{u}^{n}+\Delta t\left(\mathbf{f}+\nu \nabla^{2} \mathbf{u}\right) \quad ; \quad \text { corrector : } \quad \mathbf{u}^{* *}=-\frac{\Delta t}{\rho} \nabla p \\
\text { predictor : } & \frac{1}{\rho} \frac{\rho^{*}-\rho^{n}}{\Delta t}=-\nabla \cdot \mathbf{u}^{*} \quad ; \quad \text { corrector : } \quad \frac{1}{\rho} \frac{\rho^{* *}}{\Delta t}=-\nabla \cdot \mathbf{u}^{* *}
\end{array}
$$

For incompressibility $\frac{D \rho}{D t}=0$, hence $n^{0}=n^{*}+n^{* *}$.
Since $\rho \propto n ; \quad \frac{1}{\rho} \rho^{* *}=\frac{1}{\Delta t} \frac{n^{* *}}{n^{0}}=-\nabla \cdot \mathbf{u}^{* *}$.
Substitution in $\mathbf{u}^{* *}=-\frac{\Delta t}{\rho} \nabla p$ we obtain $\quad \nabla^{2} p=\frac{-\rho}{\Delta t^{2}} \frac{n^{*}-n^{0}}{n^{0}}$

Summary of method

Step	Equation
predictor stage	$\mathbf{u}^{*}=\mathbf{u}^{n}+\Delta t(\mathbf{f})+\Delta t\left(\nu \nabla^{2} \mathbf{u}^{*}\right)$
	$\mathbf{x}_{i}^{*}=\mathbf{x}_{i}^{n}+\Delta t \cdot \mathbf{u}_{i}^{*}$
compute pressure	$\nabla^{2} p=\frac{-\rho}{\Delta t^{2}} \frac{\left(n^{*}-n^{0}\right)}{n^{0}}$
corrector stage	$\mathbf{u}^{n+1}=\mathbf{u}^{*}+\mathbf{u}^{* *}=\mathbf{u}^{*}-\frac{\Delta t}{\rho} \nabla p^{n+1}$
	$\mathbf{x}_{i}^{n+1}=\mathbf{x}_{i}^{n}+\Delta t \cdot \mathbf{u}_{i}^{n+1}$

Differential operators

The gradient in MPS is given by:

$$
\nabla \phi_{i}=\frac{d}{n^{0}} \sum_{j \neq i}^{N} w\left(r_{i j}\right) \frac{\left(\phi_{j}-\phi_{i}\right)\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)}{\left|\mathbf{x}_{j}-\mathbf{x}_{i}\right|^{2}}
$$

while the Laplacian is modelled as:

$$
\nabla^{2} \phi_{i}=\frac{2 d}{\lambda n^{0}} \sum_{j \neq i}^{N} w\left(r_{i j}\right)\left(\phi_{j}-\phi_{i}\right)
$$

where: $\quad \lambda=\frac{\sum_{j \neq i}^{N} w\left(r_{i j}\right) r_{i j}^{2}}{\sum_{j \neq i}^{N} w\left(r_{i j}\right)}$

$$
d=3 \text { in } 3 \mathrm{D} \text { and } d=2 \text { in } 2 \mathrm{D} .
$$

Summary of method

Step	Equation
predictor stage	$\mathbf{u}_{i}^{*}=\mathbf{u}_{i}^{n}+\Delta t\left(\nu \frac{2 d}{\lambda n^{0}}\left(\sum_{j \neq i}^{N} w\left(r_{i j}\right)\left(\mathbf{u}_{j}^{*}-\mathbf{u}_{i}^{*}\right)\right)+\mathbf{f}\right)$
	$\mathbf{r}_{i}^{*}=\mathbf{r}_{i}^{n}+\Delta t \cdot \mathbf{u}_{i}^{*}$

$$
\text { particle number } \quad n_{i}^{*}=\sum_{j \neq i}^{N} w\left(r_{i j}\right)
$$

$$
\text { pressure } \quad \sum_{j \neq i}^{N}\left(w\left(r_{i j}\right) P_{j}^{n+1}\right)-P_{i}^{n+1}\left(\sum_{j \neq i}^{N} w\left(r_{i j}\right)\right)=-\frac{\rho \lambda\left(n_{i}^{*}-n^{0}\right)}{\Delta t^{2} 2 d}
$$

$$
\text { pressure gradient } \quad \nabla P_{i}^{n+1}=\frac{d}{n_{i}^{*}} \sum_{j \neq i}^{N} w\left(r_{i j}\right)\left(P_{j}^{n+1}-\left(P_{i}^{n+1}\right)\right) \frac{\left(r_{j}-r_{i}\right)}{\left|r_{i j}\right|^{2}}
$$

$$
\begin{array}{ll}
\hline \text { corrector stage } & \mathbf{u}_{i}^{n+1}=\mathbf{u}_{i}^{*}-\Delta t \frac{1}{\rho} \nabla P_{i}^{n+1} \\
& \mathbf{r}_{i}^{n+1}=\mathbf{r}_{i}^{n}+\Delta t \cdot \mathbf{u}_{i}^{n+1}
\end{array}
$$

Modelling RBCs

In simulating blood in small vessels, the constitutive components (i.e. the cells) must be modelled.

The approach is to use a spring network model for the membranes:

- tension/compression spring
- bending spring
- penalisation force (e.g. area and volume constraints)

Springs act as body force terms in the predictor stage.

Figure : Red blood cell membrane spring network model.

Results: Different structural parameters

Figure : Discretisation of the domain and red blood cells.

Testing different spring stiffness coefficients

Figure: Testing static stretching with 100 pN force, $\mathrm{Kb}=3.2 \times 10^{-11} \mathrm{~N}$.

Results of flow simulations

relative velocity in two orthogonal planes

relative velocity in two orthogonal planes
Figure: RBC flowing in a constricted vessel, showing cross sections of the relative velocity $\left(u^{\prime}=u-\bar{u}\right)$.

Results of flow simulations

Figure: RBC flowing in small vessel - modelling endothelial cells.

Results: RBCs in straight pipe

Figure : Experiment of RBC flowing in small constriction.

Results of flow simulations

Simulations in a discontinuous constriction

RBC flowing in model capillary . network of the retina

Conclusions and Future Work

Conclusion:

- can perform RBC tracking of experimental data;
- can simulate blood flow in capillaries;
- can compare with some benchmark studies.

Future Work:

- more benchmark studies;
- model cell adhesion;
- model cell hemolysis;
- observe cell migration in relation to the flow field;
- use simulation to develop devices for studying patient specific properties;

Acknowledgements

FUNDING:

- 'MatComPhys' - Marie Curie Intra-European Fellowships
- BIOMIMETIC - A miomimetic microdevice for the diagnosis of erythrocytes dideases based on their deformability. FCT grant PTDC/SAU-ENB/116929/2012.

COLLABORATORS:

- The BFSL lab, Tohoku Univ, Japan. Especially Prof. Takami Yamaguchi, Takuji Ishikawa, Yohsuke Imai.
- Ana João, Jorge Tiago (Instituto Superior Técnico, CEMAT)
- Rui Lima \& co-workers (Polytechnic Institute of Bragança, ESTiG/IPB)

Gradient operator

Given a scalar quantity ϕ, the gradient vector for particles at positions \mathbf{x}_{i} and \mathbf{x}_{j} is: $\nabla \phi_{i j}=\frac{\left(\phi_{j}-\phi_{i}\right)}{\left|\mathbf{x}_{j}-\mathbf{x}_{i}\right|} \cdot \frac{\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)}{\left|\mathbf{x}_{j}-\mathbf{x}_{i}\right|}$

The gradient in MPS, where there are several neighbouring particles j and an interpolation is performed using the weight function, is written as:

$$
\nabla \phi_{i}=\frac{d}{n^{0}} \sum_{j \neq i}^{N} w\left(r_{i j}\right) \frac{\left(\phi_{j}-\phi_{i}\right)\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)}{\left|\mathbf{x}_{j}-\mathbf{x}_{i}\right|^{2}}
$$

where d is the number of space dimensions, hence $d=3$ in 3D and $d=2$ in 2D.

Laplacian operator

The Laplacian is modelled as diffusion problem: $\frac{d \phi}{d t}=\alpha \nabla^{2} \phi$ with $\alpha>0$.

For an initial condition of a point source of unit magnitude, the solution is given by $\phi(x, t)=\left(\frac{1}{\sqrt{4 \pi \alpha t}}\right)^{d} \exp \left(-\frac{r^{2}}{4 \alpha t}\right)$, hence a normal distribution with mean $=0$ and variance $=2 d \alpha t$.

The variance distribution of ϕ increases by $2 d \alpha \Delta t$ during time step Δt. Therefore the quantity transferred from particle i to the neighbouring particles should have the same variance increase:
$\Delta \phi_{i \rightarrow j}=\frac{2 d \alpha \Delta t}{\lambda n^{0}} \phi_{i} w\left(r_{i j}\right)$
A normalisation appears due to the discretisation $\lambda=\frac{\sum_{j \neq i}^{N} w\left(r_{i j}\right) r_{i j}^{2}}{\sum_{j \neq i}^{N} w\left(r_{i j}\right)}$.
Putting it all together: $\nabla^{2} \phi_{i}=\frac{2 d}{\lambda n^{0}} \sum_{j \neq i}^{N} w\left(r_{i j}\right)\left(\phi_{j}-\phi_{i}\right)$

