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Viale A. Doria, 6, 95125, Catania, Italy, mulone@dmi.unict.it

Workshop on PDE’s and Biomedical Applications

December 4-6, 2014, Lisbon, Portugal



AIM

New idea: introduce “optimal Lyapunov function” in the
PDEs models to study nonlinear stability - up to linear
criticality - (applications to diffusion models in biology)

Epidemic model with diffusion and cross diffusion

Finding a (nonlinear) threshold such that glia will not
aggregate in the brain (connected with the Alzheimer’s
disease)

Some open problems
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OUTLINE

We address the question of relating the stability properties of a
linear operator with the stability properties of its associate
symmetric operator. The linear-algebra results of Bendixson and
Hirsch give a precise result in the ODEs case.

We show that in a variety of cases, including infinite dimensional
cases associated to systems of PDEs, the same result is valid .

We give a method to build an optimal Lyapunov function for the
coincidence of critical linear and nonlinear stability thresholds for
PDEs systems with biological applications.

ODEs - Bendixon-Hirsch theorem
PDEs - Reaction-diffusion systems
Biomedical applications
Conclusion and open problems
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autonomous ODEs

Consider the linear ODE system

ẋ = Ax , (1)

where x = (x1, x2, . . . , xn)T ∈ Rn, A is a constant n × n matrix
with real entries. Let us denote with AH its symmetric part and by
and AA its skew-symmetric part.

We want to study the stability of the zero solution (0, 0, . . . , 0)
for the systems ẋ = Ax, ẋ = AHx, ẋ = AAx (Routh-Hurwitz
conditions).

Let us begin with an easy example (a is a real number):{
ẋ = −2x + ay
ẏ = −x − 3y ,

(2)

A =

(
−2 a

−1 −3

)
, AH =

 −2
a− 1

2
a− 1

2
−3





AA =

 0
a + 1

2

−a + 1

2
0


The (complex) eigenvalues σ1, σ2 of the matrix A are

σ1,2 =
−5±

√
1− 4a

2
.

They are real numbers if a ≤ 1

4
and complex conjugate if a >

1

4
.

The zero solution of system ẋ = AHx, is asymptotically stable if
a ∈ (1− 2

√
6, 1 + 2

√
6).

The zero solution of (2) is asymptotically stable if a ∈ (−6,+∞).

The zero solution of system ẋ = AAx, is stable if a ∈ R.



If S1, S2 and S3 are the “stability domains” (the subsets of R
where the corresponding system is stable) of AH(a), A(a) and
AA(a), respectively, we have

S1 ⊂ S2 ⊂ S3

in the particular case:

(1− 2
√

6, 1 + 2
√

6) ⊂ (−6,+∞) ⊂ R



Now we use the Lyapunov method with the ”Euclidean norm”

E0 :=
1

2
‖x‖2 ,

we have:

Ė0 = xTAHx .

In the case of the previous example we have:

Ė0 < 0 when a ∈ (1− 2
√

6, 1 + 2
√

6) for both systems

ẋ = Ax, ẋ = AHx

Ė0 = 0 for system ẋ = AAx.



From this example it appears that:

the symmetric part of a matrix does not “help” stability, in the
sense that it shrinks the stability domain.

Moreover, the stability boundaries obtained with the
eigenvalues method and with the ”Euclidean norm” - in the

case of a symmetric matrix - coincide.

A Lyapunov function is said to be optimal if it ensures stability
when the system is (spectrally) stable.

In the symmetric case, the Euclidean norm is an optimal
Lyapunov function

Is this a particular or a general result? What
happens for PDEs?



Eigenvalues of AH (continuous line) and real part of eigenvalues of A
(dotted line) for the sample system (2), as functions of parameter a.
Note that for every choice of a (e.g. vertical line at a = −3 in the figure)
the eigenvalues of AH bound the eigenvalues of A both from below and
above; for a > 1/4, the eigenvalues of AH bound the real part of
eigenvalues of A.



Bendixson-Hirsch Theorem (1900)

Let A be a matrix n × n with real entries.

Let us denote with AH =
A + AT

2
its symmetric part.

Denote by σ1, σ2, . . . , σn, the eigenvalues (in general complex
numbers, σk = Re(σk) + i Im(σk)) of A and by λ1, λ2, . . . , λn, the
eigenvalues of AH .

In 1900 Bendixson [1] proved:

Theorem

min(λ1, λ2, . . . , λn) ≤ Re(σk) ≤ max(λ1, λ2, . . . , λn), k = 1, . . . , n

This result has been improved and generalized by Hirsch 1902, [2]
and others (Bromwich 1906, [3], Browne 1928, [4], Bellman 1960,
[5], ... Adam and Tsatsomero 2006, [6]).



From this result it follows that for the linear autonomous ODE
system

ẋ = Ax , (3)

the smallest stability domain of the equilibrium point (0, 0) is
obtained by the system

ẋ = AHx . (4)

Then

• the symmetry of a matrix does not “help” stability (one has
the smallest stability region)

• If we have a symmetric matrix AH we can enlarge its
stability region by adding a skewsymmetric matrix to it



In the case of a nonlinear ODE system

ẋ = Ax + f (x ) (5)

where f (x ,) is a C 1 function with f (0) = f ′(0) = 0 and if 0 is a
hyperbolic point, then the linearization principle (Th. of Hartman
and Grobman) holds. In this case a local stability result is valid.

In the general case, the Lyapunov direct method can be applied.

• The ”Euclidean norm” E0 := 1
2xTAx, if A = AH (symmetric

case), is an optimal Lyapunov function.

• In general, with this norm, the linear and nonlinear critical
stability thresholds are not equal.

In order to have the same linear and nonlinear thresholds, a new
Lyapunov function must be introduced. For this, the classical
reduction method has been introduced.



Given the system

Sold : ẋ = Ax + f (x),

the canonical reduction method is based on the classical
eigenvalues-eigenvectors method:

we introduce the change of variables, the new canonical field
variables y

x = Q y ,

and obtain the new (topologically equivalent) system

Snew : ẏ = By + Q−1f (Qy),

where B = Q−1AQ is a similar matrix to A and Q is a
transformation matrix. It is a non singular matrix of eigenvectors
(or generalized eigenvectors).

As it is well known “similar operators define differential equations
that have the same dynamical properties”, [7], pag 39.



Now if we define the new optimal Lyapunov function (equivalent to
energy E0)

E :=
1

2
‖y‖2 =

1

2
[y 2

1 + y 2
2 + · · ·+ y 2

n ],

we reach the critical linear and (at least local) nonlinear stability
thresholds and we obtain a known basin of attraction of initial
data. We observe that the linear part of system Snew is in a
canonical form (diagonal or a general Jordan form) and the
Euclidean norm is an optimal Lyapunov function for the
coincidence of the critical linear and nonlinear stability thresholds.

In the case of the previous example (linear system (2)), we have:

Ė = −1

2
[(5 +

√
1− 4a)y 2

1 + (5−
√

1− 4a)y 2
2 ] if a <

1

4
,

Ė = −5

2
[y 2

1 +
1

5
y1y2 + y 2

2 ] if a =
1

4
,

Ė = −5

2
[y 2

1 + y 2
2 ] if a >

1

4
.



Reaction-diffusion systems

Let us consider the linearized perturbation equations of a given
constant solution Ũ to a reaction-diffusion system

Ut = D∆U + LU (6)

where U is a vector with n components, D and L are constant
n × n matrices, with D symmetric and positive definite. Assuming
Dirichlet boundary conditions, a Bendixson-Hirsch theorem holds.

• If L is a linear symmetric operator, then the L2(Ω) energy
E0 = 1

2

∫
Ω |U|

2 dΩ is an optimal Lyapunov function (and also here
we have the ”smallest stability region”).

• If L is not a linear symmetric operator, then optimal Lyapunov
functions for the coincidence of linear and nonlinear critical
thresholds can be defined.



An operative method (reduction method) to build an optimal
Lyapunov function is presented here.

An alternative method (auxiliary system method) for a nonlinear
reaction-diffusion system is given by Rionero in several papers in
the last decade.

Given the system (perturbation to a steady solution)

Ui ,t = Dik∆Uk + LikUk + Ni (U1, . . . ,Un) (7)

with initial condition U(x , 0) = U0(x) and

Ui (x , t) = 0, ∀ (x , t) ∈ ∂Ω× (0,+∞) (8)

(Dirichlet boundary conditions) or (Neumann b. c., with given
average in Ω):

∂Ui (x , t)

∂n
= 0, ∀ (x , t) ∈ ∂Ω×(0,+∞), < Ui >=

∫
Ω

Ui (x , t) dΩ = 0

(9)



The reduction method for RD systems

1 First we linearize:

Ui ,t = Dik∆Uk + LikUk , (10)

and denote by ξp (p positive integer) the generic eigenvalue of
the Laplacian with boundary conditions with boundary

conditions (8) or (9), ξp =
p2π2

l2
, with

l−2 = l−2
1 + l−2

2 + · · ·+ l−2
m (the box case)

We define
Aξ = −ξD + L

where ξ is the principal eigenvalue of the operator
Aξ = −ξD + L (i.e., the eigenvalue corresponding to the
critical linearized instability parameter), and compute the
eigenvalues of Aξ.

2 We introduce a transformation matrix Q of eigenvectors
(and/or generalized eigenvectors) of the matrix Aξ, and its
inverse Q−1.



3 We define the new field variables V = Q−1U and write the
new (nonlinear) reaction-diffusion system equivalent to (7),

Vi ,t = Fik∆Vk + GikVk + N̄i (V ), V (0) = V0, (11)

where
F = Q−1DQ, G = Q−1LQ, (12)

and
N̄(V ) = Q−1N(QV ). (13)

4 We introduce the Lyapunov function

E1(t) =
1

2
‖V (t)‖2

for the new linearized system and study the (linear) stability
of the zero solution.



5 We write the balance equation for the Lyapunov function
E1(t):

Ė1(t) = (GV ,V )− (F∇V ,∇V ),

we assume that the quadratic form (F∇V ,∇V ) is positive
definite and study the maximum problem

M = max
S

(GV ,V )

(F∇V ,∇V )
, (14)

where S is the space of the admissible functions (for example,
in the case of zero Dirichlet b.c., it is the Sobolev space
W 1,2

0 (Ω)).
M is obtained by solving the equation

det(Tij) = 0, (15)

where

Tij =

{
2(Gij −M(p)ξpFij) if i = j ,

Gij + Gji −M(p)ξp(Fij + Fji ) if i 6= j ,
(16)

and maximizing the generic eigenvalue M(p) with respect to
the integer p.



6 We consider the nonlinear system (33) and define the new
Lyapunov function

E (t) = E1(t) + b̃E2(t), b̃ ≥ 0,

with a suitable E2 which controls the nonlinearities, and write
the energy equation of E (t) (in some problems, and for
particular space dimensions, we can choose b̃ = 0 and the
optimal Lyapunov function E (t) coincides with E1(t)).

7 Finally, we show that the condition

M < 1

is the nonlinear stability condition, and

M = 1

gives the critical Lyapunov number RE which coincides with
Rc .



If we are able to control the nonlinearities (this holds e.g. in
the case the nonlinear term N satisfies the condition

|(NU,U)| ≤ K0‖U‖α0‖∇U‖2

with K0 and α0 positive numbers) we obtain the coincidence
of the linear and nonlinear stability boundaries with a
computable value for the basin of attraction of the initial data.



An epidemic model with diffusion

For the epidemic models described by reaction-diffusion systems, it
is generally assumed that susceptible individuals and infected
individuals move randomly.

- Spatial diffusions of susceptible individuals: d∆S

- Spatial diffusions of infected individuals d∆I ,

where S and I are the densities of susceptible individuals and
infectious individuals in space, and d is the diffusion coefficient.

However, from biological perspective, the diffusion of individuals
may be connected with searching foods, escaping high infection
risks. In the first case, individuals tend to diffuse in the direction of
lower density of a population, where there are richer resources. In
the second case, individuals may move along the gradient of
infectious individuals to avoid higher infection.



Motivated by these observations, we consider an epidemic model
that incorporates these ingredients, [M., Straughan, Wang 2007] .

We begin from a kinetic model and choose a fundamental epidemic
model of SI type as a framework to develop:

dS
dt = µ− µS − βSI ,

dI
dt = βSI − (µ+ ε)I ,

(17)

where µ is the recruitment rate of the population and the per
capita death rate of the population, β is the disease transmission
coefficient and ε is the disease-induced death rate.

To include the spatial heterogeneity, as a first approach, we assume
that the population is distributed on the interval [0, L] of one
dimensional space. Let S(t, x) and I (t, x) be the densities of
susceptible individuals and infectious individuals at the spatial
position x and the time t, respectively. Let N = S + I be the
population density.



An epidemic model with diffusion

The epidemic model with diffusion and cross-diffusion is given by:

St =a∆S + c∆I + µ− µS − βSI

It =c∆S + a∆I − (µ+ ε)I + βSI
(18)

in Ω× (0,∞), where S(t, x) and I (t, x) are the densities of
susceptible individuals and infectious individuals of a biological
population at the spatial position x and the time t, respectively, µ
is the recruitment rate of the population and the per capita death
rate of the population (1/µ is the mean lifetime), β is the disease
transmission coefficient (contact rate) and ε is the disease-induced
death rate (1/ε is the average infectious period), a is a diffusion
term and c is a cross-diffusion term, 0 ≤ c < a.



Rescaling the variables by introducing t∗ = t(µ+ ε),

x∗ =

√
µ+ ε

a
x, R0 =

β

µ+ ε
, p =

c

a
, λ =

µ

µ+ ε
, we obtain

(omitting the asterisks)

St =∆S + p∆I + λ(1− S)− R0SI

It =p∆S + ∆I − I + R0SI .
(19)

We note that 0 ≤ p < 1 and 0 < λ < 1, and the basic
reproduction number R0 is used as the threshold quantity that
determines whether a disease can invade a population.

The equilibria are the disease-free H0 = (1, 0), for any R0, and, for
R0 > 1, the endemic

H1 = (Se , Ie) = (
1

R0
, λ(1− 1

R0
)).



M., Straughan and Wang (2007) have proved that, by choosing
the classical energy of perturbation (s, i) to H0, the critical energy
reproduction number R0E0 is below the linearized instability
reproduction numberR0c .

By using the reduction method, as introduced above, the
coincidence of the critical linear and nonlinear reproduction
numbers has been proved and a known radius of attraction for the
initial data has been given.

Theorem

If ε < β and

R0 < R0c := 1 +
(a− c) ξ

µ+ ε
− cξε

(µ+ ε) (cξ + aξ + µ)
, (20)

the disease free equilibrium (1, 0) is nonlinearly stable.

ξn = n2π2/L2, ξ1 = ξ.



According to their eigenvectors, we obtain the transformation
matrix:

Q =


−2(cξ + β)

β − ε+ h
1

1 −(β − ε− h)

2(cξ + β)

 ,
where h is a known function of β, c , and ε. Defining:

A =
√

2β[
1

a− c
(1 +

β

cξ + β
) +

cξ

(a + c)(cξ + β)
] . (21)

The condition

E (0) <

µ[1 +
a− c

µ
− R0]

A


2

, (22)

assures that the new energy E (t) decays exponentially.

The method can be applied also to study the stability of H1 [MSW
2007].



Application to biology: Glia aggregation

M. Helal, E. Hingant, L. Pujo-Menjouet, G. F. Webb, (2014),
Alzheimers disease: analysis of a mathematical model incorporating
the role of prions J. Math. Biol. 69, Issue 5, 1207–1235

“Alzheimers disease (AD) is acknowledged as one of the most widespread
diseases of age-related dementia with ∼= 35.6 million people infected
worldwide according to Wimo and Prince (2010). By the 2050s, this
same report has predicted three or four times more people living with
AD. AD affects memory, cognizance, behavior, and eventually leads to
death. Apart from the social dysfunction of patients, another notable
societal consequence of AD is its economic cost (≈ $422 billion in 2009,
e.g. Wimo and Prince 2010)”.

We now address the problem of finding a threshold such that glia cells,

which are the support structure for the central nervous system, will not

aggregate in the brain. Mathematically this is an example where we have

three PDE equations, strong nonlinearities, cross diffusion effects, and

Neumann boundary conditions.



Luca et al. [9] explain the biological background of Alzheimer’s
disease and the possible connection with the aggregation of cells
found in the brain, glia, into the formation of senile plaques. These
writers develop a simplified model for glia aggregation which is
based on the glia cell density m(x, t) and two chemicals secreted
by the glia, or produced in the aggregation process, interleukin
1-β, IL1-β, and tumor necrosis factor, TNF-α. The concentrations
of the latter in the brain are denoted by c1(x, t), c2(x, t).

In the model of Luca et al. [9], IL1-β acts as a chemoattractant
while TNF-α plays the role of a chemorepulsant.

Luca et al. [9] write their equations in one space dimension, but in
3-D they are

∂m

∂t
= µ∆m −∇ · (χ1m∇c1 − χ2m∇c2)

∂cα
∂t

= Dα∆cα + aαm − bαcα, α = 1, 2.

(23)



The coefficients µ (motility), χ1 (attractant chemotactic), χ2

(repellent chemotactic), Dα (diffusion), aα (rates of production of
the chemicals), bα (rates of decay of the chemicals), are taken to
be positive constants. Let Ω be the domain (of the brain) with
boundary Γ. The boundary conditions are of zero flux type and so
on Γ

∂m

∂n
=
∂c1

∂n
=
∂c2

∂n
= 0. (24)

Initial conditions are given so that at time t = 0

m(x, 0) = m0(x), c1(x, 0) = g1(x), c2(x, 0) = g2(x). (25)

Consider a constant steady state m̄, c̄1, c̄2, and the perturbation
equations.



Now let m′, φ and ψ be perturbations to m̄, c̄1, c̄2, it can be
proved (see M. and Straughan, SIAM J. Appl. Math. 2009, [8])
that the perturbations have zero mean, provided they have zero
mean initially, i.e.∫

Ω
m′(x, t) dx = 0,

∫
Ω
φ(x, t) dx = 0,

∫
Ω
ψ(x, t) dx = 0. (26)

Equations (26) are important in the analysis which follows to
ensure the validity of Poincaré and Sobolev inequalities.

Luca et al. [9] develop a complete linearized instability analysis
about the constant steady state m̄, c̄1, c̄2.

Biologically this is relevant because it corresponds to the (normal)
situation in the brain before any glia aggregation commences.



Their analysis derives a threshold between the parameter
a = L2/L1 and A = χ1a1D1/χ2a2D2 which represent the ratio of
length scales of attraction and repulsion and the ratio of strengths
of attraction and repulsion. When the chemorepulsion is strong
and short-ranged (A < 1, a > A1/2), the homogeneous steady state
is stable.

(Lα = Dα/bα are the distance over which chemicals spread during
the characteristic time of decay).

In terms of a non-dimensionalized steady state
m̄ = 1, c̄1 = 1, c̄2 = 1, we introduce non-dimensional
perturbations m′, φ, ψ, and then the non-dimensional, nonlinear
equations and boundary conditions may be written



∂m′

∂t
= ∆m′ − A1∆φ+ A2∆ψ − A1∇ · (m′∇φ) + A2∇ · (m′∇ψ)

ε1
∂φ

∂t
= ∆φ+ a2(m′ − φ)

ε2
∂ψ

∂t
= ∆ψ + m′ − ψ

(27)

in Ω× (0,T ), for some time T > 0,

∂m′

∂n
=
∂φ

∂n
=
∂ψ

∂n
= 0 on Γ. (28)

We should mention that Quinlan & Straughan [11] have performed
a nonlinear stability analysis for (27), (28).They used a Lyapunov
function of form

E (t) = ‖m′‖2 + λ1‖∇φ‖2 + λ2‖∇ψ‖2 (29)



however, measure (29) does not lead to an optimal result and their
nonlinear stability thresholds lie below the linear instability ones.

By using the reduction method, we show how to recover the
instability boundary and derive a fully nonlinear stability result.

We begin with the linearized version of (27), namely

m′t = ∆m′ − A1∆φ+ A2∆ψ

φt = ε−1
1 [∆φ+ a2(m′ − φ)],

ψt = ε−1
2 [∆ψ + m′ − ψ].

(30)

Define the vector U by

U = (U1,U2,U3)T = (m′, φ, ψ)T . (31)



Let −ξn̄ be the eigenvalue of the Laplacian which yields the linear
instability boundary of Luca et al. [9] (usually n̄ = 1, but this is
not always the case), so

∆ζ = −ξn̄ζ.

Let us define ξ = ξn̄, then replace ∆ by −ξ. The matrix Aξ is
given by

Aξ =

 −ξ A1ξ −A2ξ

a2ε−1
1 −ε−1

1 (ξ + a2) 0

ε−1
2 0 −ε−1

2 (ξ + 1)


from the right hand side of (30).



Let Aξ have eigenvalues λ1, λ2, λ3 (not necessarily real and
distinct). Let a1, a2, a3, be the generalized eigenvectors (or
vectors) corresponding to λ1, λ2, λ3 and then define the
transformation matrix

Q =
(

a1
T , a2

T , a3
T
)
.

We transform from U to V = (V1,V2,V 3)T by

V = Q−1U. (32)

And then rewrite the fully nonlinear version of (27) as

Vi ,t = Fik∆Vk + GikVk + Ñi (V ), V (0) = V0, (33)

F = Q−1DQ, G = Q−1LQ, Ñ(V ) = Q−1N(QV ). (34)

The matrices D and L are given by

D =

 1 −A1 A2

0 −ε−1
1 0

0 0 −ε−1
2





L =

 0 0 0

a2ε−1
1 −a2ε−1

1 0

ε−1
2 0 −ε−1

2


(We have implemented a Maple program to give Q, F , and G
once we give explicit values of the coefficients. This rapidly yields
the required matrices in any situation).

The key is now to multiply (33) by Vi and integrate over Ω to find

Ė (t) = −(F∇V ,∇V ) + (GV ,V ) + (Ñ,V ), (35)

where E =
1

2
‖V ‖2 and F and G give rise to bilinear forms as

indicated, (·, ·) being the inner product on L2(Ω). Note that due to
(32) Vi also satisfy Neumann boundary conditions on Ω. We need
to restrict the coefficients of F such that (F∇V ,∇V ) is a
positive-definite form, indeed, these are also conditions required in
a linear stability analysis.



Then define

M = max
H

(GV ,V )

(F∇V ,∇V )
, (36)

H being the space of admissible solutions V1,V2,V3. From (35)
we may derive

Ė (t) ≤ −(F∇V ,∇V )(1−M) + (Ñ,V ). (37)

The condition that M = 1 yields exactly the linear stability -
instability threshold of Luca et al. [9].

Of course, it remains to handle the nonlinear term (Ñ,V ).



For this, we use a Lyapunov function of form

E(t) = E (t) + β1‖∇V ‖2 + β2‖∆V ‖2, (38)

where β1 > 0 and β2 > 0 are positive constants to be chosen.

If we are inside the linear stability boundary of Luca et al. [9] then

we have shown E → 0 exponentially provided E1/2(0) <
k

h̃
, for

explicit positive values of k, h̃.



A note on heroin epidemics

Treatment of heroin users or users of other drugs such as crack
cocaine is a costly procedure and is a major burden on the health
system of any country. Two very interesting models have recently
been proposed. One for treating heroin users, proposed by White
and Comiskey, E. White, C. Comiskey, Heroin epidemics, treatment
and ODE modelling, Math. Biosci. 208 (2007) 312, and a similar
one for those with alcohol problems, see Sánchez et al., F.
Sánchez, X. Wang, C. Castillo-Cáhvez, D.M. Gorman, P.J.
Gruenwald, Drinking as an epidemic: a simple mathematical model
with recovery and relapse, in: K. Witkiewitz, G. Alan Marlett
(Eds.), Therapists Guide to Evidence-Based Relapse Prevention,
Academic Press, New York, 2007, p. 353.



Both models divide the mathematical problem into three classes,
namely susceptibles, heroin users or alcoholics, and heroin users or
alcoholics undergoing treatment. In fact, the two types of model
are very similar. The one of Sánchez et al. differs from that of
White and Comiskey only in that Sánchez et al. assume the same
death/removal rate for each of the three classes, whereas White
and Comiskey allow the drug users and those in treatment to have
enhanced death rates.

Two key terms are the probability of becoming a drug user per unit
time, and the probability of a drug user in treatment relapsing to
untreated use per unit time. White & Comiskey denote these,
respectively, by β1 and β3. The value for β1 is usually relatively
small.

• β1 = O(0.02) and β3 = O(0.8) seem reasonable.



The White-Comiskey model


Ṡ = Λ− β1U1S

N
− µS

U̇1 =
β1U1S

N
− pU1 +

β3U1U2

N
− (µ+ δ1)U1

U̇2 = pU1 −
β3U1U2

N
− (µ+ δ2)U2 .

(39)

Here S , U1, U2, N(= S + U1 + U2) are the number of susceptibles
in the population, the number of drug users not in treatment, the
number of drug users in treatment, and the total population size,
respectively.

The quantities Λ, µ, δ1, δ2, β1, β3, p are



Λ: the number of individuals entering the susceptible population,

µ: the natural death rate of the general population,

δ1: an enhanced removal/death rate for drug users,

δ2: an enhanced removal/death rate for drug users undergoing
treatment,

β1: the probability of becoming a drug user, per unit time,

β3: the probability of a drug user in treatment relapsing to
untreated use, per unit time,

p: the portion of drug users who enter treatment, per unit time.

White and Comiskey assume

Λ = µS + (µ+ δ1)U1 + (µ+ δ2)U2 . (40)

However, when they analyze equilibrium solutions and their
stability they take Λ to be constant.



In [M. and Straughan (2009)], we revisit the heroin addiction
problem with the model of White and Comiskey but when Λ is
given by (40).

In this case the ODE system is the following


Ṡ = (µ+ δ1)U1 + (µ+ δ2)U2 −

β1U1S

N

U̇1 =
β1U1S

N
− pU1 +

β3U1U2

N
− (µ+ δ1)U1

U̇2 = pU1 −
β3U1U2

N
− (µ+ δ2)U2

(41)

Since N = S + U1 + U2 is constant, we introduce the fractions of
S , U1 and U2:

s =
S

N
, u1 =

U1

N
, u2 =

U2

N
,

with s + u1 + u2 = 1.



This results in the equations:
ṡ = (µ+ δ1)u1 + (µ+ δ2)u2 − β1u1s
u̇1 = β1u1s − pu1 + β3u1u2 − (µ+ δ1)u1

u̇2 = pu1 − β3u1u2 − (µ+ δ2)u2 .
(42)

Since u2 = 1− s − u1, we may consider the system for s and u1

(which is the analogue of the s, i system in the epidemic model
with vital dynamics, Hethcote [26]):{

ṡ = (µ+ δ1)u1 + (µ+ δ2)(1− s − u1)− β1u1s
u̇1 = β1u1s − pu1 + β3u1(1− s − u1)− (µ+ δ1)u1 .

(43)

Simplifying, we obtain{
ṡ = µ+ δ2 + (δ1 − δ2)u1 − (µ+ δ2)s − β1u1s
u̇1 = (β3 − p − µ− δ1)u1 + (β1 − β3)u1s − β3u2

1 .
(44)

From system (44) we see that (s = 1, u1 = 0, u2 = 0) is a
disease-free equilibrium.



If R0 :=
β1

p + µ+ δ1
< 1, we have stability, if R0 > 1 the

disease-free state is unstable.

• Endemic equilibrium (R0 > 1)

We may assume that 0 < β1 < β3, which is reasonable in real life.

s̄ =
β3

β1 − β3
ū1+

p + µ+ δ1 − β3

β1 − β3
= − β3ū1

β3 − β1
+

(β3 − p − µ− δ1)

β3 − β1
,

(45)

ū1 =
−h +

√
h2 + 4β1β3(µ+ δ2)(β1 − p − µ− δ1)

2β1β3
, (46)

where
h = β1(p + µ+ δ2 − β3) + β3(δ1 + µ).

The sign of h depends on the size of β3.

The nonlinear system of perturbation equations for studying the
stability of the endemic equilibrium is



 ṡ = −(β1ū1 + µ+ δ2)s +
(µ+ δ2)(s̄ − 1)

ū1
u1 − β1u1s

u̇1 = (β1 − β3)ū1s − β3ū1u1 + (β1 − β3)u1s − β3u2
1 .

(47)

We put

H =
(µ+ δ2)(1− s̄)

ū1
, K1 = (β3 − β1)ū1, β3 > β1.

By studying the eigenvalues of the Jacobian matrix, we prove that
the endemic equilibrium is stable.

The nonlinear system of perturbation equations for studying the
stability of the endemic equilibrium is given by (47), observing
β3 > β1. In terms of H and K1 this system is{

ṡ = −(β1ū1 + µ+ δ2)s − Hu1 − β1u1s
u̇1 = −K1s − β3ū1u1 + (β1 − β3)u1s − β3u2

1 .
(48)

For this case the linear operator attached to (48) is trivially
symmetrizable (multiply (48)2 by H/K1). Hence, since the linear



operator becomes symmetric nonlinear stability follows, at least in
a neighborhood of (s̄, ū1), cf. Straughan [17], pp. 77-87.

It is also possible (Poincaré-Bendixson) to prove that the
equilibrium (s̄, ū1) is globally asymptotically stable for positive
initial conditions when R0 > 1.

We believe the analysis given here places the White & Comiskey
[29] model for heroin users/treatment on a very firm footing.
There are further aspects / generalizations we should like to
consider in the future. Among these we mention the possibility of
considering the male/female distribution of drug users. For
example, see Hay [24], in the 2004/5 assessment, the prevalence
rate of opiate users in the North East of England shows a big
variation between male and female rates. In Middlesbrough the
prevalence rates were, female 7.73, male 34.91, in Northumberland,
female 2.80, male 5.97, in Newcastle, female 6.56, male 19.25.
Such a large variation probably deserves investigation.



We also believe effects of movement between places could be very
important. This would lead to a system of coupled nonlinear
partial differential equations, although this would be of
parabolic-hyperbolic type since the diffusion coefficient of those in
treatment is presumably zero or very small since they should stay
close to their place of treatment. Such degenerate
parabolic-hyperbolic systems represent a difficult class of partial
equations to analyze, cf. M. & Solonnikov [28].



Conclusion

Symmetry of a constant linear operator does not “help”
stability

The previous result does not hold for non-autonomous system
(both in ODEs and PDEs), for example in the presence of
delay effects

Optimal Lyapunov functions in PDEs of biological systems
with diffusion

Global stability results or local stability with a known
attracting radius



Conclusion

Symmetry of a constant linear operator does not “help”
stability

The previous result does not hold for non-autonomous system
(both in ODEs and PDEs), for example in the presence of
delay effects

Optimal Lyapunov functions in PDEs of biological systems
with diffusion

Global stability results or local stability with a known
attracting radius



Conclusion

Symmetry of a constant linear operator does not “help”
stability

The previous result does not hold for non-autonomous system
(both in ODEs and PDEs), for example in the presence of
delay effects

Optimal Lyapunov functions in PDEs of biological systems
with diffusion

Global stability results or local stability with a known
attracting radius



Conclusion

Symmetry of a constant linear operator does not “help”
stability

The previous result does not hold for non-autonomous system
(both in ODEs and PDEs), for example in the presence of
delay effects

Optimal Lyapunov functions in PDEs of biological systems
with diffusion

Global stability results or local stability with a known
attracting radius



[1] I. O. Bendixson, Sur les racines d’une équation fondamentale.
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