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β =
T1 − T2

d
, β = βC ⇔ buoyancy force=weight.
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1 Introduction

Because of its great relevance in geophysical phenomena and in
planning new artificial porous materials, the onset of convection in
porous layers with variable permeability and/or viscosities, in the
past as nowadays, has attracted the attention of scientists { see [1]-
[13], [28] and the references therein }. As concerns the geophysical
phenomena, we confine ourselves to mention the increase in viscos-
ity with depth in the earth’s mantle [1]; the permeability changes
due to mineral diagenesis in fractured crust [7]; the porosity changes
due to subterranean movements, the increase in permeability and

4



porosity near solid wall {see [10]-[11] and references therein}. As
concerns the stratification of porosity in artificial porous materials,
we recall that for insulating purposes, the porosity has to be strati-
fied in such a way to delay or inhibit heat transfer and hence in such
a way to produce an high thermal critical Rayleigh number. On the
contrary, when rapid heat transfer is requested (such as in cooling
pipes used in modern devices), the porosity has to be stratified in
such a way to produce low thermal critical Rayleigh numbers.
In the present paper, in the Darcy-Boussinesq-Brinkman scheme,
the onset of convection in a porous horizontal layer L with depth-
dependent permeability and viscosities - via the Auxiliary System
Method [17]-[19] - is investigated1.
Section 2 is dedicated to some preliminaries and to the functional
spaces in which the problem is embedded. In section 3 the main
relation between the effective unknown fields is obtained. The lin-
ear instability is studied in the subsequent section 4. The nonlin-

1In [28] the onset of convection in ternary porous layers with depth-dependent permeability and viscosity has been studied in the
absence of Brinkman term.

5



ear stability is considered in section 5. In section 6, looking for
symmetries and skew-symmetries hidden in the Darcy-Boussinesq-
Brinkman model, for classes of values of the Prandtl numbers, a
condition in closed form guaranteeing the global nonlinear stability,
is furnished. Section 7 is devoted to the applications.

References

[1] Torrance, K.E.; Turcotte, D.L. Thermal convection with large
viscosity variations. J. Fluid Mech. 47, 113-125, (1971).

[2] Kassoy, D.R.; Zebib, A. Variable viscosity effects on the on-
set of convection in porous media. Phys. Fluids 18, 1649-1651,
(1975).

[3] Straughan, B. Stability Criteria for convection with large vis-
cosity variations. Acta Mech. 61, 59-72, (1986).

6



[4] McKibbin, R. Heat transfer in a Vertically-layered porous
medium heated from below. Transp. Porous Med. 1, 361-370,
(1986).

[5] Rosenberg, N.J., Spera, F.J.Role of anisotropic and/or layered
permeability in hydrothermal system. Geophys. Res. Lett. 17,
235-238, (1990).

[6] Rees, D.A.S., Pop, I. Vertical free convection in a porous
medium with variable permeability effects. Int. J. Heat Mass
Transfer, 43, 2565-2571, (2000).

[7] Fontaine, F. Jh., Rabinowicz, M., Boulegue, J. Permeability
changes due to mineral diagenesis in fractured crust. Earth
and Planetary Science Letters, 184, 407-425, (2001).

[8] Nield, D.A., Kuznetsov, A.V. The effect of a transition layer
between a fluid and a porous medium: shear flow in a channel.
Transp. Porous Med., 72, 477-487, (2009).

7



[9] Alloui, Z., Bennacer, R., Vasseur, P. Variable Permeability
effect on convection in binary mixtures saturating a porous
layer. Heat and Mass Transfer, 45, 1117-1127, (2009).

[10] Hamdan, M.H., Kamel, M.T., Flow through variable perme-
ability porous layers. Adv. Theor. Appl. Mech., 4, n.3, 135-145,
(2011).

[11] Hamdan, M.H., Kamel, M.T., Siyyam, H.I. A permeability
function for Brinkman’s equation. Proceedings of 11th WSEAS
Int. Conf. on Mathematical Methods, Computational Techniques
and intelligent systems. (2009)

[12] Rionero, S.Onset of convection in porous materials with ver-
tically stratified porosity. Acta Mech., 222, 261-272, (2011).

[13] Nield, D.A., Kuznetsov, A.V. Optimization of forced con-
vection heat transfer in a composite porous medium channel.
Transp. Porous Med., 99, 349-357., (2013).

8



[14] Nield, D.A., Bejan, A. Conduction in Porous Media, 4th edition,
Springer, (2013).

[15] Straughan, B. Stability and wave motion in porous media.
Springer Appl. Math. Sc. 165, (2008).

[16] Flavin, J.N.; Rionero, S., Qualitative estimates for partial differ-
ential equations: an introduction. Boca Raton (FL): CRC Press,
(1996).

[17] Rionero, S. Absence of subcritical instabilities and global non
linear stability for porous ternary diffusive-convective fluid
mixtures. Phys. Fluids, 24, issue 10, 104101, (2012), 17 p.

[18] Rionero, S. Multicomponent diffusive-convective fluid mo-
tions in porous layers: ultimately boundedness, absence of
subcritical instabilities and global non linear stability for any
number of salts. Phys. Fluids, 25, 054104 (2013), 23 p.

9



[19] Rionero, S. Soret effects on the onset of convection in rotat-
ing porous layers via the “auxiliary system method”. Ricerche
di Matematica, Vol. 62, Issue 2, 183–208, (2013).

[20] Merkin, D.R. Introduction to the theory of stability. Springer
texts in Applied Mathematics, 24, (1997).

[21] Gantmacher, F.R. The theory of matrices. Vol. 2, AMS
(Chelsea Plublishing) (2000)

[22] Rionero, S. Longtime behaviour of multicomponent fluid mix-
ture in porous media. J. Eng. Sc., 48, 1519-1533, (2010).

[23] Rionero, S. Symmetries and skew-symmetries against onset
of convection in porous layers salted from above and below.
Int. J. Nonlinear Mech., 47, 61-67, (2012).

[24] Capone, F., Rionero, S. Inertia effect on the onset of con-
vection in rotating porous layers via the “auxiliary system
method”. Int. J. Non-linear Mech., 57, 192-200, (2013).

10



[25] Capone, F., De Luca, R. Ultimately boundedness and stability
of triply diffusive mixtures in rotating porous layers under the
action of Brinkman law. Int. J. of Non-Linear Mech. 47, issue 7,
799-805, (2012).

[26] Capone, F., De Luca, R. Onset of convection for ternary fluid
mixtures saturating horizontal porous layers with large pores.
Rendiconti Lincei Matematica e Applicazioni, 23 (4), 405–428,
(2012).

[27] Rionero, S. Heat and Mass transfer by convection in multi-
component Navier-Stokes mixtures: absence of subcritical in-
stabilities and global nonlinear stability via the Auxiliary Sys-
tem Method. Rend. Lincei Mat. Appl., 25, 1, 1-44, (2014).

[28] Rionero, S. Convection in ternary porous layers with depth-
dependent permeability and viscosity. (submitted).

11



2 Discussion

i) The heat and mass transfer by convection in ternary Brinkman
porous layers with depth-dependent permeability and viscosi-
ties, via the Auxiliary System Method, is studied2;

ii) an own non linear system is obtained for the evolution of
each Fourier component of the perturbations;

iii) the linear instability captures completely the physics of the
onset of convection since the absence of subcritical instabil-
ities is shown together with the properties of linear stability
to guarantee also the global non linear stability;

iv) the thermal critical Rayleigh number is obtained in closed
form;

v) effects on the onset of convection in the earth’s mantle, by
virtue of depth-dependent permeability and viscosities, are

2Further applications of the auxiliary system method can be found in [16], [21]-[28]
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evaluated;

vi) how large pores should be stratified in artificial porous mate-
rials in order to inhibit or promote the onset of convection,
is analyzed.
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3 Preliminaries

Let Ox1x2x3 be an orthogonal frame of reference with fundamental
unit vectors e1, e2, e3 (e3 pointing vertically upwards).
We assume that two different chemical components (“salts”) Sα

(α = 1, 2), have dissolved in the fluid and have concentrations Cα
(α = 1, 2), respectively, and that the equation of state is

ρ = ρ0

[
1− α∗(T − T0) + A1(C1 − Ĉ1) + A2(C2 − Ĉ2)

]
,

where ρ0, T0, Ĉα (α = 1, 2), are reference values of the density,
temperature and salt concentrations, while the constants α∗, Aα de-
note the thermal and solute Sα expansion coefficients respectively
(α = 1, 2). Combining Darcy’s Law with (thermal) energy and mass
balance together with the Boussinesq approximation, we obtain the
fundamental equations governing the isochoric motions (when the
pores x3 = z ∈ [0, 1] are in the layer L] sufficiently large to generate
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the Brinkman viscosity) [14]-[16]

∇p=−µ1
K
v−gρ0[1−α∗(T−T0)+A1(C1−Ĉ1)+A2(C2−Ĉ2)]+

+2

1−3∑
i,j

∂

∂xj
(µ2Dij)ei,

∇ · v = 0,
Tt + v · ∇T = k∆T,
C1t + v · ∇C1 = k1∆C1,
C2t + v · ∇C2 = k2∆C2,

(3.1)
where (i = 1, 2)
p= pressure field, µ1 = f1(x3)µ̄1= viscosity of the fluid,
µ2 = f2(x3)µ̄2 = viscosity of the fluid in the porous layer,
K = K̄f3(x3)= permeability, v= velocity, g= gravity,
k= thermal diffusivity, Kα= diffusivity of the solute Sα,

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
,
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K̄ = constant reference value of permeability;
µ̄i = constant reference value of viscosity µi, (i = 1, 2).
To (3.1) we append the boundary conditions T (0) = T1, T (d) = T2,

Cα(0) = Cαl, Cα(d) = Cαu α = 1, 2,
v · e3 = 0, at z = 0, d,

(3.2)

with T1, T2, Cαl, Cαu (α = 1, 2), positive constants. The boundary

value problem (3.1)-(3.2) admits the conduction solution (ṽ, p̃, T̃ , C̃α)
given by

ṽ = 0, T̃ = T1 − βz, β =
T1 − T2

d
,

C̃α = Cαl −
z(δCα)

d
, Cαl − Cαu = δCα,

P̃ = p0 + ρ0gz
2

[
−α∗β

2
+ A1

(δC1)

2d
+ A2

(δC2)

2d

]
+

−ρ0gz
[
1− α∗(T1 − T0) + A1(C1l − Ĉ1) + A2(C2l − Ĉ2)

]
,

(3.3)
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where p0 is a constant. Setting

v = ṽ + u, p = P̃ + Π, T = T̃ + θ, Cα = C̃α + Φα, (3.4)

and introducing the scalings

t = t∗
d2

k
, u = u∗K̄

d
, Π = Π∗µ1k

K
, x = x∗d, θ = θ∗T ♯,

Φα = (Φα)
∗Φ♯α, T

♯ =

(
µ̄1k|δT |
α∗ρ0gK̄d

)1
2

, Φ♯α =

(
µ̄1kPα|δCα|
Aαρ0gK̄d

)1
2

,

R =

(
α∗ρ0gK̄d|δT |

µ1k

)1
2

, Rα =

(
Aαρ0gK̄dPα|δCα|

µ̄1k

)1
2

,

Da =
µ̄2k

µ̄1d2
, D∗

ij =
1

2

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
,

δT = T1 − T2, H = sgn(δT ), Hα = sgn(δCα), Pα =
k

kα
,

(3.5)
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since in the case at stake the layer is heated from below and salted
from below by S1 and from above by S2, it follows that H = H1 =
1, H2 = −1 and the equations governing the dimensionless pertur-
bations {u∗,Π∗, θ∗, (Φα)

∗}, omitting the stars, are

∇Π=−f3(x3)u+(Rθ−R1Φ1−R2Φ2)e3+2Da

1−3∑
i,j

∂

∂xj
(gDij)ei,

∇ · u = 0,
θt + u · ∇θ = Ru · e3 +∆θ,

P1

(
∂Φ1

∂t
+ u · ∇Φ1

)
= R1u · e3 +∆Φ1,

P2

(
∂Φ2

∂t
+ u · ∇Φ2

)
= −R2u · e3 +∆Φ2,

(3.6)
under the boundary conditions

u · e3 = θ = Φ1 = Φ2 = 0 on z = 0, 1. (3.7)

In (3.5)-(3.6) R and Rα are the thermal and salt Rayleigh numbers
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respectively while Pα are the salt Prandtl numbers and Da is the
Darcy number.
We assume, as usually done in stability problems in layers, that

i) the perturbations (u, v, w, θ,Φ1,Φ2) are periodic in the x and y
directions, respectively of periods 2π/ax, 2π/ay;

ii) Ω = [0, 2π/ax]× [0, 2π/ay]× [0, 1] is the periodicity cell;

iii) u, Φ1, Φ2, θ belong to W 2,2(Ω) and are such that all their first
derivatives and second spatial derivatives can be expanded in a
Fourier series uniformly convergent in Ω

and denote by by L∗
2(Ω) the set of functions Φ such that

1) Φ : (x, t) ∈ Ω× R+ → Φ(x, t) ∈ R, Φ ∈ W 2,2(Ω), ∀t ∈ R+, Φ

is periodic in the x and y directions of period
2π

ax
,
2π

ay
respectively

and [Φ]z=0 = [Φ]z=1 = 0;

2) Φ, together with all the first derivatives and second spatial deriva-
tives, can be expanded in a Fourier series absolutely uniformly
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convergent in Ω, ∀t ∈ R+.

4 The effective unknown fields

This Section is devoted to show that (θ,Φ1,Φ2) are the effective
unknown fields. Let us consider the b.v.p.

∇Π = −f (z)u + (Rθ −R1Φ1 −R2Φ2)e3 + 2Da

1−3∑
i,j

∂

∂xj
(gDij)ei,

∇ · u = 0,

u · e3 = θ = Φ1 = Φ2 = 0, z = 0, 1.

(4.1)
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Since the set {sinnπz}n∈N is a complete orthogonal system for
L2(0, 1), then

Φ ∈ {w, θ,Φ1,Φ2} → Φ =

∞∑
n=1

Φn =

∞∑
n=1

Φ̃n(x, y, t) sinnπz.

(4.2)
By virtue of the periodicity in the x and y directions, one easily
obtains

∆1Φn = −a2Φn, ∆Φn = −ξnΦn, (4.3)

with

a2 = a2x + a2y, ∆1 =
∂2

∂x2
+
∂2

∂y2
, ξn = a2 + n2π2. (4.4)

Further, setting

ζ = (rotu) · e3 =
∂v

∂x
− ∂u

∂y
, (4.5)
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from (4.1)2 one obtains

∆1u = − ∂2w

∂x∂z
− ∂ζ

∂y
, ∆1v = − ∂2w

∂y∂z
+
∂ζ

∂x
. (4.6)

Since

[
g(x3)

2

(
∂ui
∂xj

+
∂uj
∂xi

)]
j

=
1

2

∂g

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+
1

2
g

(
∂2ui
∂x2j

+
∂

∂xi

∂ui
∂xj

)
,

∂

∂xi

∂uj
∂xj

=
∂

∂xi
(∇ · u) = 0,

∂g

∂xj
= 0, j = 1, 2,

(4.7)
it follows that

2(g(z)Dij)jei = g′(z)

(
∂u

∂z
+∇w

)
+ g(z)∆u (4.8)
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and (4.1) becomes

∇Π = −f (z)u+

(
Rθ −

2∑
α=1

RαΦα

)
e3+Da [g

′(z)(uz +∇w) + g∆u] .

(4.9)
Setting

F = q(z)U, with q ∈ C2(0, 1), ∇ ·U = 0, (4.10)

one easily obtains

e3 · ∇ ×∇× F = −q′∂U3

∂z
− q∆U3. (4.11)

Applying (4.11) with F given respectively by f (z)u, g′uz, g∆u, one
obtains

e3 · ∇ ×∇× (fu) = −f ′∂w
∂z

− f∆w,

e3 · ∇ ×∇× (g′uz) = −g′′wzz − g′∆wz,

e3 · ∇ ×∇× (g∆u) = −g′∆wz − g∆∆w.

(4.12)
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Since
e3 · ∇ ×∇× (g′∇w) = g′′∆1w,

e3 · ∇ ×∇×

(
Rθ−

2∑
α=1

RαΦα

)
= −∆1

(
Rθ−

2∑
α=1

RαΦα

)
,

(4.13)
the third component of the double curl of (4.1), is given by

A +B = −∆1

(
Rθ −

2∑
α=1

RαΦα

)
, (4.14)

with

A = − (f ′wz + f∆w) , B = g∆∆w+2g′∆wz+g
′′ (wzz −∆1w) .

(4.15)
For (w = wn, θ = θn,Φα = Φαn) one obtains

(A1n +B1n)w̃n = a2

(
Rθn −

2∑
α=1

RαΦαn

)
, (4.16)
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with
A1n = −

(
f ′
∂

∂z
+ f∆

)
sinnπz,

B1n = g∆∆+ 2g′∆
∂

∂z
+ g′′

(
∂2

∂z2
−∆1

)
sinnπz,

(4.17)

(4.16), multiplied by sinnπz and integrated on (0, 1) gives

(A∗
n +B∗

n)w̃n =
a2

2

(
Rθ̃n −

2∑
α=1

RαΦ̃αn

)
, (4.18)

with
A∗
n = −

∫ 1

0

(nπ
2
f ′ sin 2nπz + ξnf sin

2 nπz
)
dz,

B∗
n =

∫ 1

0

{[
gξ2n + g′′

(
ξn + 2a2

)]
sin2 nπz − g′ξn sin 2nπz

}
dz,

(4.19)
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i.e.

w̃n = Ãn

(
Rθ̃n −

2∑
α=1

RαΦ̃αn

)
, (4.20)

with

Ãn =
a2

2(A∗
n +B∗

n)
. (4.21)

5 Linear instability

Setting

Ln =

 a1n a2n a3n
b1n b2n b3n
c1n c2n c3n

 , (5.1)

26




a1n = R2Ãn − ξn, a2n = −RR1Ãn, a3n = −RR2Ãn,

b1n =
RR1

P1
Ãn, b2n = −R

2
1Ãn + ξn
P1

, b3n = −RR1

P1
Ãn,

c1n = −RR2

P2
Ãn, c2n =

R1R2

P2
Ãn, c3n =

R2
2Ãn − ξn
P2

,

(5.2)
one easily obtains that

∂

∂t

∞∑
n=1

 θn
Φ1n

Φ2n

 =

∞∑
n=1

Ln

 θn
Φ1n

Φ2n

− u ·
∞∑
n=1

∇θn
∇Φ1n

∇Φ2n

 . (5.3)

Linearizing it follows that

∂

∂t

 θ̃n
Φ̃1n

Φ̃2n

 = Ln

 θ̃n
Φ̃1n

Φ̃2n

 , ∀n ∈ {1, 2, ...}. (5.4)

27



Denoting by (λ1n, λ2n, λ3n) the eigenvalues of Ln, the spectral equa-
tion of Ln is given by

λ3in − I1nλ
2
in + I2nλin − I3n = 0, n ∈ {1, 2, ...}, (5.5)

with I1n, I2n, I3n characteristic values (invariants) of Ln [20]-[21],
given by

I1n = a1n + b2n + c3n =
3∑

α=1

λαn, I3n = detLn = λ1nλ2nλ3n,

I2n =

∣∣∣∣∣ a1n a2n

b1n b2n

∣∣∣∣∣ +
∣∣∣∣∣ a1n a3n

c1n c3n

∣∣∣∣∣ +
∣∣∣∣∣ b2n b3n

c2n c3n

∣∣∣∣∣ = λ1n(λ2n + λ3n) + λ2nλ3n

(5.6)
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and one easily obtains

I1n =

{
R2 −

[
R2

1

P1
− R2

2

P2
+
ξn

Ãn

(
1 +

1

P1
+

1

P2

)]}
Ãn,

I2n =
P1 + P2

P1P2

[
1 + P1 + P2

P1 + P2

ξn

Ãn

+
1 + P2

P1 + P2
R2

1 −
1 + P1

P1 + P2
R2

2 −R2

]
ξnÃn,

I3n =
1

P1P2

[
R2 −

(
R2

1 −R2
2 +

ξn

Ãn

)]
Ãnξ

2
n.

(5.7)
By virtue of the Routh-Hurwitz conditions on the sign of the real
parts of the eigenvalues of Ln ([20], pp. 111-114), the following
results hold:

i) the conditions, ∀(a2, n) ∈ R+ × N,

I1n < 0, I2n > 0, I3n < 0, (5.8)

are necessary for guaranteeing the linear asymptotic stabil-
ity;
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ii) if and only if, ∀(a2, n) ∈ R+ × N,

I1n < 0, I3n < 0, I1nI2n − I3n < 0, (5.9)

the thermal conduction solution is asymptotically linearly
stable.

Setting

H∗ = min
(a2,n)∈R+×N

Hn, Hn =
ξn

Ãn

, (5.10)
RC1 =

R2
1

P1
− R2

2

P2
+

(
1 +

1

P1
+

1

P2

)
H∗, RC3 = R2

1 −R2
2 +H∗,

RC2 =
1 + P2

P1 + P2
R2

1 −
1 + P1

P1 + P2
R2

2 +

(
1 +

1

P1 + P2

)
H∗,

(5.11)
in view of i) and ii) one obtains that

iii) the conditions

R2 < RCα, α = 1, 2, 3, (5.12)
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are necessary for inhibiting the onset of convection;

iv) if and only ifR
2 < min(RC1, RC2),

(RC1 −R2)(RC2 −R2) >
H∗

P1 + P2
(RC3 −R2),

(5.13)

convection cannot occur and the thermal conduction solution
is asymptotically linearly stable.

Since (5.12) and (5.13)1 are easily obtained, we confine ourselves

to (5.13)2. But it is easily verified that I2n >
I3n

I1n
is equivalent to(

1 +
1

P1 + P2

)
ξn

Ãn

+
1 + P2

P1 + P2
R2

1 −
1 + P1

P1 + P2
R2

2 >

ξn/Ãn

P1 + P2

(R2
1 −R2

2 + ξn/Ãn)−R2

R2
1

P1
− R2

2

P2
+

(
1 +

1

P1
+

1

P2

)
ξn

Ãn

−R2

,
(5.14)

which implies (5.13)2.
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6 Nonlinear stability via the Auxiliary System Method

Setting

X =

 θ

Φ1

Φ2

 , F = −u ·

∇θ
∇Φ1

∇Φ2

 = −u · ∇X,

X =

∞∑
n=1

Xn, Xn =

 θn

Φ1n

Φ2n

 , Fn = −u · ∇Xn, F =

∞∑
n=1

Fn,

(6.1)
(5.4) become

∂X

∂t
=

∞∑
n=1

(LnXn + Fn),

(X)t=0 = X(0) =

∞∑
n=1

X(0)
n , Xn = 0, on z = 0, 1,

(6.2)
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with X
(0)
n assigned. Following [17]-[19], we call auxiliary evolu-

tion system of the nth-Fourier component of the perturbation X,
associated to the velocity u given by (6.2), the system

∂

∂t
X̃n = LnX̃n + F̃n,

X̃n = 0, on z = 0, 1,
[
X̃n

]
t=0

= X
(0)
n ,

(6.3)

where F̃n and X̃n are given by

F̃n = −u · ∇X̃n, X̃n =

 φn
φ1n

φ2n

 . (6.4)

Theorem 6.1 Let θ,Φ1,Φ2, φn, φ1n, φ2n ∈ L∗
2(Ω) and let (u, θ,Φ1,Φ2)

be solution of (6.2) and (φn, φ1n, φ2n) be solution, ∀n ∈ N, of

(6.3). Then the series
∞∑
n=1

φn,
∞∑
n=1

φin, (i = 1, 2) are a.e. con-
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vergent in Ω and it follows that
∞∑
n=1

φn = θ,
∞∑
n=1

φin = Φi, (i = 1, 2). (6.5)

Proof. Setting: Sm =

m∑
n=1

φn, Sim =

m∑
n=1

φin, (i = 1, 2), the

following i.b.v.p. holds

∂

∂t

 Sm
S1m

S2m

 =

m∑
n=1

Ln

 φn
φ1n

φ2n

−

 u · ∇Sm
u · ∇S1m

u · ∇S2m

 , (6.6)

(Sm)t=0 =

m∑
n=1

θ(0)n , (Sim)t=0 =

m∑
n=1

Φ
(0)
in , (i = 1, 2),

Sm = Sim = φn = φin = 0, z = 0, 1, i = 1, 2 n = 1, ....m.
(6.7)
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Setting

Ψn =

 θn − φn, for n = 1, 2, ....m,

θn, for n > m,
, Ψ =

∞∑
n=1

Ψn (6.8)

Ψin =

 Φin − φin, for n = 1, 2, ....m,

Φin, for n > m,
, Ψi =

∞∑
n=1

Ψin (6.9)

by virtue of (6.3) and (6.6)-(6.7), one obtains,

∂

∂t

 Ψ
Ψ1

Ψ2

 =

∞∑
n=1

Ln

 Ψn

Ψ1n

Ψ2n

−

 u · ∇Ψ
u · ∇Ψ1

u · ∇Ψ2

 , (6.10)

under the i.b.c. (α = 1, 2)

(Ψ)t=0 =

∞∑
n=m+1

θ(0)n , (Ψi)t=0 =

∞∑
n=m+1

Ψ
(0)
in ; Ψ = Ψα = 0, z = 0, 1.

(6.11)
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Since lim
m→∞

∞∑
n=m+1

θ(0)n = lim
m→∞

∞∑
n=m+1

Φ
(0)
in = 0 and (6.10) under zero

i.b.v. admits only the null solution, it follows that

lim
m→∞

(θ − Sm) = lim
m→∞

(Φi − Sim) = 0, (i = 1, 2). (6.12)

Theorem 6.2 Let (5.13) hold. Then the zero solution of (6.2)
is globally asymptotically stable, i.e. the thermal conduction so-
lution is linearly stable and non linearly globally asymptotically
stable with respect to the L2(Ω)-norm.

Proof. The proof can be obtained following step by step the proof
of theorem 7.1 given in [17] in the absence of depth-dependence
permeability and viscosities.
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7 Global non linear stability via symmetries and skew-
symmetries hidden in (3.6)

Setting Ψ1 = R1θ − P1RΦ1, Ψ2 = R2θ + P2RΦ2; it follows that
(3.6) is equivalent to (α = 1, 2)
∇Π = −f (z)u +

1

R

(
R∗θ +

R1

P1
Ψ1 −

R2

P2
Ψ2

)
e3 + 2Da

1−3∑
i,j

∂

∂xj
(gDij)ei,

∇ · u = 0,
dθ

dt
= Rw +∆θ, Pα

dΨα

dt
= ∆Ψα +Rα(Pα − 1)∆θ,

(7.1)
under the boundary conditions

w = θ = Ψα = 0, on z = 0, 1, (7.2)

with

R∗ = R2 − R2
1

P1
+
R2

2

P2
. (7.3)
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System (7.1)1-(7.2)2 together with (7.3) is reducible to (3.6) via the
substitution  R∗

R

R1

P1R
− R2

P2R
Ψ1 Ψ2

R −R1 −R2 Φ1 Φ2

 (7.4)

and therefore it follows that

∂

∂t

 θ
Ψ1

Ψ2

 =

∞∑
n=1

L∗
n

 θn
Ψ1n

Ψ2n

− u · ∇

 θ
Ψ1

Ψ2

 , (7.5)

with

L∗
n =


R∗Ãn − ξn

R1

P1
Ãn −R2

P2
Ãn

−R1

P1
(P1 − 1)ξn −ξn

P1
0

−R2

P2
(P2 − 1)ξn 0 −ξn

P2

 . (7.6)

Theorem 7.1 The global non linear stability of the conduction
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solution is guaranteed by

R2 < R2
1 −R2

2 +H∗ = RC3, for P1 ≤ 1, P2 ≥ 1, (7.7)

R2 <
R2

1

P1
− R2

2

P2
+H∗, for P1 ≥ 1, P2 ≤ 1, (7.8)

R2 < R2
1 −

R2
2

P2
+H∗, for P1 ≤ 1, P2 ≤ 1, (7.9)

R2 <
R2

1

P1
−R2

2 +H∗, for P1 ≥ 1, P2 ≥ 1, (7.10)

where H∗ is given by (5.10).

Proof. Since the operator L∗
n can be obtained by the operator Ln

appearing in (6.6) of [23] by putting Ãn at the place of ηn, following
step by step the proof given in [23], the theorem immediately follows.
For the sake of completeness, we give here a sketch of the proof

of (7.7). By virtue of the absence of subcritical instabilities, (7.5)
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reduces to

∂

∂t

 θn
ψ1n

ψ2n

 = L∗
n

 θn
ψ1n

ψ2n

 . (7.11)

Setting

ψαn =

√
|Pα − 1| ξn

Ãn

φαn, (α = 1, 2) (7.12)

(7.11) for (P1 ≤ 1, P2 ≥ 1) becomes

∂

∂t

 θn
ψ1n

ψ2n

 = L̃n

 θn
ψ1n

ψ2n

 (7.13)
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with L̃n symmetric operator given by

L̃n =


R∗Ãn − ξn

R1

P1

√
(1− P1)ξnÃn −R2

P2

√
(P2 − 1)ξnÃn

R1

P1

√
(1− P1)ξnÃn −ξn

P1
0

−R2

P2

√
(P2 − 1)ξnÃn 0 −ξn

P2

 .

(7.14)
Since, ∀n ∈ N, the eigenvalues of L̃n are real numbers, the marginal
state is a stationary state and the critical Rayleigh number is given
by the invariant RC3 and, in view of (5.12)for α = 3, (7.7) immedi-
ately follows.

8 Applications

By virtue of (5.11)-(5.13) and (7.7)-(7.10), the influence of depth-
dependence on the onset of convection, is measured via H∗: the
onset of convection is delayed by the increasing of H∗. We now, for
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the sake of simplicity, confine ourselves to the case

g = 1 + bz, g ≥ 0 in (0, 1), (8.1)

with b real constant. In view of (8.1) and∫ 1

0

g′ sin 2nπz dz =
b

nπ

∫ 1

0

d

dz

(
sin2 nπz

)
dz = 0, (8.2)

it follows that

A∗
n =

∫ 1

0

(
n2π2 cos2 nπz + a2 sin2 nπz

)
f dz,

B∗
n = ξ2n

∫ 1

0

g sin2 nπz dz,

Hn =
2ξn

Ãn

=
2

a2
ξn (A

∗
n +B∗

n) > 2ξn

∫ 1

0

(
f +

ξ2n
a2
g

)
sin2 nπz dz.

(8.3)
Therefore

H∗ = min
(a2,n)∈R+×N

Hn = min
a2∈R+

H1. (8.4)
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In view of
lim
a2→0

H1 = lim
a2→∞

H1 = ∞, (8.5)

it follows that there exists a positive bounded critical value a2c > 0
such that

H∗ = (H1)a2=a2c . (8.6)

Setting

h1 =

∫ 1

0

f sin2 πz dz, h2 =

∫ 1

0

f cos2 πzdz, h3 =
B∗

1

a2 + π2
,

(8.7)
it easily follows that

∂H1

∂a2
= 0 ⇔ π2(a2h1 + π2h2) = a2(a2 + π2)(h1 + h3) (8.8)

and hence

a2c =
π2

2(h1 + h3)

{
[h23 + 4h2(h1 + h3)]

1
2 − h3

}
. (8.9)
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Denoting by H∗
u and H

∗
l an upper and a lower bound of H∗, in view

of 
∫ 1

0

sin2 πz dz =

∫ 1

0

cos2 πz dz =
1

2
,∫ 1

0

g sin2 πz dz =
1

2
+ b

∫ 1

0

z sin2 πz dz,

(8.10)

one obtains
H∗
l =

2

a2c
(a2c + π2)

[
(π2 + a2c)f̄

2
+ (a2c + π2)2

ḡ

2

]
>

> (π2 + a2c)[f̄ + (a2c + π2)ḡ] > π2(f̄ + π2ḡ),

H∗
u =

(a2c + π2)2

a2c
[ ¯̄f + (a2c + π2)¯̄g],

(8.11)

with f̄ = ess inf(0,1)f,
¯̄f = ess sup(0,1)f, ḡ = ess infg > 0, ¯̄g =

ess sup(0,1)g.
7.1 Applications to the earth’s mantle
The increase in viscosity µ1 in earth’s mantle proposed by Torrance
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and Turgotte (see [1], p.118) is given by

µ1 = µ̄1f1(z), f1(z) = ec(1/2−z), c = const. > 0. (8.12)

For a linear variation in the permeability given by

K = K̄f3(z), f3(z) = 1 + γz, γ = const., (8.13)

one obtains

f =
ec(1/2−z)

1 + γz
. (8.14)

The corresponding values of H∗, for various values of c, γ, b are
furnished by the following table.
7.2 Stratification of large pores in artificial porous materials

The stratification of pores in artificial porous materials has a very
relevant interest. In fact, for instance, in the construction of porous
materials for insulating purposes, the aim is to delay or prohibit
heat transfer and hence high thermal critical Rayleigh numbers are
requested. Viceversa in cooling pipes used in computers or in other
modern devices, the porosity has to be stratified in such a way to
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Table 1: Values of H∗ for the earth’s mantle

f g h1 h2 h3 a∗c H∗

e(0.5−z)

1 + 0.5z
1+0.5z 0.41 0.46 0.625 4.23 100.61

e(0.5−z)

1− 0.5z
1+0.2z 0.67 0.69 0.55 5.53 105.94

e0.5(0.5−z)

1− 0.2z
1+0.5z 0.68 0.70 0.625 5.25 114.64

e0.5(0.5−z)

1 + 1.5z
1 + z 0.30 0.34 0.75 3.12 116.95

e0.5(0.5−z)

1− 0.2z
1+1.5z 0.56 0.56 0.875 3.86 140.16

e2.5(0.5−z)

1− 0.8z
1+1.5z 0.88 1.03 0.875 5.50 159.07

e(0.5−z)

1 + 2.5z
1+2z 0.25 0.33 1 2.49 161.28

e0.5(0.5−z)

1 + 2z
1 + 2.5z 0.26 0.32 1.125 2.18 190.83

produce low thermal critical Rayleigh numbers. We now confine
ourselves to the stratification of large pores in porous artificial ma-
terials assuming f = 1 and ḡ given by (8.1).
Values of g guaranteeing increasing values of H∗ and hence high
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thermal critical Rayleigh numbers are furnished in table 2.

Table 2: Stratification of large pores for prohibiting heat transfer

f g h1 = h2 h3 a∗c H∗

1 1+0.1z 1/2 0.525 4.81444 91.812

1 1+0.3z 1/2 0.575 4.59051 97.9331

1 1+0.5z 1/2 0.625 4.38649 104.248

1 1+z 1/2 3/4 3.94784 120.903

1 1+1.5z 1/2 0.875 3.58895 138.791

1 1+2z 1/2 1 3.28987 157.914

1 1+3.5z 1/2 1.375 2.63189 222.683

1 1+5z 1/2 1.75 2.19325 298.556

1 1+7z 1/2 2.25 1.79447 416.991

1 1+10z 1/2 3 1.41 631.655

1 1+20z 1/2 5.5 0.822 1667.96
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Values of g guaranteeing decreasing values of H∗ and hence low
thermal critical Rayleigh numbers are furnished in table 3.

Table 3: Stratification of large pores for rapid heat transfer

f g h1 = h2 h3 a∗c H∗

1 1-0.1z 1/2 0.475 5.06134 85.8902

1 1-1/5z 1/2 0.45 5.19453 83.0034

1 1-1/3z 1/2 0.416667 5.383422 79.231

1 1-1/2z 1/2 0.375 5.63977 74.6389

1 1-2/3z 1/2 0.33333 5.92176 70.1839

1 1-3/4z 1/2 0.3125 6.0736 68.0077

1 1-7/8z 1/2 0.28125 6.31655 64.8078

1 1-7/8z 1/2 0.28125 6.31655 64.8078
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