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Introduction

A stent is an expandable metallic tube used to open a narrowed or
clogged artery.
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Introduction

During a procedure called angioplasty, the stent is inserted into a
coronary artery and expanded using a small balloon.
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Introduction

Drug eluting stents: polymeric coating loaded with drugs that inhibit
smooth muscle cells proliferation.
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Modeling blood flow

Assumptions

The stented vessel region is a straight cylinder with axis Γl.

Flow is stable and laminar in the lumen (characteristic Reynolds
number is low).

The wall is a single homogeneous layer (the fluid-wall model).
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Modeling blood flow

Domain

Figure : Physical domain
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Modeling blood flow

System of equations

The model is defined by the following system of equations,

µ∆ul − (ul · ∇)ul −∇pl = 0 in Ωl × (0, T ),

∇ · ul = 0 in Ωl × (0, T ),

κ1uw +∇pw = 0 in Ωw × (0, T ),

∇ · uw = 0 in Ωw × (0, T ),

where µ is the blood dynamic viscosity and κ1 is the inverse permeability
of the arterial wall.
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Modeling blood flow

System of equations

We denote by Ωp =
⋃k
i=1 Ω

(i)
p, the polymeric coating of the stent, then,

κ1up +∇pp = 0 in Ωp × (0, T ),

∇ · up = 0 in Ωp × (0, T ),

where κ2 is the inverse permeability of polymeric coating.
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Modeling blood flow

Boundary conditions

Coupled with boundary conditions,

ul = uin on Γin,

pl = p0 on Γout,

ul · ηl = 0 on Γl,

uw · ηw = 0 on Γcut,

pw = p0 − 100 on Γadv,

where uin : R2 → R2 is a given function and p0 ∈ R is a constant.

E. Gudiño CEMAT/IST 11



Modeling blood flow

Interface conditions

We consider the continuity of the pressure and the continuity of the
normal component of the velocity,

pw = pl, ul · ηl = −uw · ηw on Γint,

pp = pw, up · ηp = −uw · ηw on Γp,w,

pl = pp, ul · ηl = −up · ηp on Γp,l.
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Modeling drug release

Assumptions

The coating of the drug eluting stent is made of a porous polymeric
matrix that encapsulates a therapeutic drug in solid phase.

Drug transfer does not affect blood and plasma flow.

The drug is present in two states (dissolved and undissolved).

Drug release is controlled by non-Fickian diffusion of plasma into the
polymeric matrix, by advection activated by trans-mural pressure
gradients and dissolution.
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Modeling drug release

Non-Fickian diffusion

Fick’s classic law:

∂C

∂t
= −∇ · JF (C)

→ JF (C) = −D(C)∇C

Modified flux:

J = JF (C) + JNF (σ) → JNF (C) = −Dv(C)∇σ

Non-Fickian diffusion equation:

∂C

∂t
= −∇ · (JF (C) + JNF (σ))

E. Gudiño CEMAT/IST 15



Modeling drug release

Non-Fickian diffusion

Fick’s classic law:

∂C

∂t
= −∇ · JF (C) → JF (C) = −D(C)∇C

Modified flux:

J = JF (C) + JNF (σ) → JNF (C) = −Dv(C)∇σ

Non-Fickian diffusion equation:

∂C

∂t
= −∇ · (JF (C) + JNF (σ))

E. Gudiño CEMAT/IST 15



Modeling drug release

Non-Fickian diffusion

Fick’s classic law:

∂C

∂t
= −∇ · JF (C) → JF (C) = −D(C)∇C

Modified flux:

J = JF (C) + JNF (σ)

→ JNF (C) = −Dv(C)∇σ

Non-Fickian diffusion equation:

∂C

∂t
= −∇ · (JF (C) + JNF (σ))

E. Gudiño CEMAT/IST 15



Modeling drug release

Non-Fickian diffusion

Fick’s classic law:

∂C

∂t
= −∇ · JF (C) → JF (C) = −D(C)∇C

Modified flux:

J = JF (C) + JNF (σ) → JNF (C) = −Dv(C)∇σ

Non-Fickian diffusion equation:

∂C

∂t
= −∇ · (JF (C) + JNF (σ))

E. Gudiño CEMAT/IST 15



Modeling drug release

Non-Fickian diffusion

Fick’s classic law:

∂C

∂t
= −∇ · JF (C) → JF (C) = −D(C)∇C

Modified flux:

J = JF (C) + JNF (σ) → JNF (C) = −Dv(C)∇σ

Non-Fickian diffusion equation:

∂C

∂t
= −∇ · (JF (C) + JNF (σ))

E. Gudiño CEMAT/IST 15



Modeling drug release

Non-Fickian behavior

We consider a generalized Maxwell-Wiechert model with m+ 1 arms in
parallel. The stress associated to solvent uptake and exerted by the
polymer is defined as

σ(cp) = −

(
m∑
k=0

Ek

)
∇f(cp) +

∫ t

0

(
m∑
k=1

Ek
τk
e
− t−sτk

)
∇f(cp)(s)ds ,

where τk = µk
Ek

are the relaxation times associated to each of the m
Maxwell fluid arms
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Modeling drug release

System of equations

The evolution of solvent penetration, drug diffusion and dissolution in the
polymeric matrix are described by the following equations on the domain
Ωp and for t > 0,

∂cp
∂t

= ∇ · (Dp(cp)∇cp +Dv(cp)∇σ(cp)− γpupcp) ,

∂cd
∂t

= ∇ · (Dd(cp)∇cd + (υ(cp)− γdup)cd) +Kp

(
ds− cp
ds

)
cpH(s) ,

∂s

∂t
= −Kp

(
ds− cp
ds

)
cpH(s) ,

where υ(cp) = Dv(cp)
∇σ(cp)
cp

and H is the heaviside step function.
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Modeling drug release

System of equations

The concentration of dissolved drug in the lumen and in the wall can be
tracked with the following equations

∂cw
∂t

= ∇ · (Dw(cw)∇cw − γwuwcw) ,

∂cl
∂t

= ∇ · (Dl(cl)∇cl − ulcl) ,

where Dw and Dl denote the diffusion coefficients of the drug in the
lumen and in the wall respectively. The constant 0 < γi ≤ 1 denotes the
hindrance coefficient accounting for penetrant-media frictional effects.
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Modeling drug release

The fluxes

They are defined as,

Jp = − (Dp(cp)∇cp +Dv(cp)∇σ(cp)− γpupcp) ,
Jd = − (Dd(cp)∇cd + (υ(cp)− γdup)cd) ,
Jw = − (Dw(cw)∇cw − γwuwcw) ,

Jl = − (Dl(cl)∇cl − ulcl) .
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Modeling drug release

Initial conditions

We have,

cp(0) = 0 in Ωp,

cd(0) = 0 in Ωp,

s(0) = s0 in Ωp,

cw(0) = 0 in Ωw,

cl(0) = 0 in Ωl.
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Modeling drug release

Boundary conditions

Coupled with,

cp = 1 on Γp,l ∪ Γp,w,

Jw · ηw = 0 on Γadv ∪ Γcut,

Jl · ηl = 0 on Γin ∪ Γout,

Jd · ηp = 0 on Γstr,

Jp · ηp = 0 on Γstr.
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Modeling drug release

Interface conditions

We consider the continuity of the drug concentrations and the continuity
of the normal component of the fluxes,

cw = cl, Jw · ηw = −Jl · ηl on Γint,

cd = cw, Jd · ηp = −Jw · ηw on Γp,w,

cl = cd, Jl · ηl = −Jd · ηp on Γp,l.
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Finite element discretization for blood flow

Preliminaries

We use the edge stabilization technique introduced by Badia and Codina
[1], further explored by D’Angelo and Zunino [2, 3] based on a
H1-conforming approximation for velocities on each subdomain together
with Nitsche’s type penalty method for the coupling between different
subproblems. This combination leads to a continuous-discontinuous
Galerkin type penalty method.
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Finite element discretization for blood flow

Preliminaries

We will assume that each Ωi is a convex polygonal domain, equipped
with a family of quasi-uniform triangulations Th,i made of affine triangles
that are conforming on each interface.

On each subregion we consider the spaces,

Vh,i = {vh ∈ C(Ωi) : vh|K ∈ Pk(K), ∀K ∈ Th,i}, Vh,i = [Vh,i]
2
,

Qh,i = {qh ∈ L2(Ωi) : qh|K ∈ Pk−1(K), ∀K ∈ Th,i},

where k ≥ 1.
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Finite element discretization for blood flow

Preliminaries

As global approximation spaces, we define

Vh =

N⊕
i=1

Vh,i, Qh =

N⊕
i=1

Qh,i.

For the treatment of the nonlinear advective term of the steady
Navier-Stokes equation, we consider Picard’s iteration, thus we have that

µ∆ul − (wl · ∇)ul −∇pl = 0 in Ωl × (0, T ).
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Finite element discretization for blood flow

Preliminaries

We denote with

Γij = ∂Ωi ∩ ∂Ωj , for all j = 1, .., N .

Gh,ij the intersection of the trace meshes on Γij .

Bh,i the trace meshes at the boundary subdomains.

Fh,i the set of all interior edges of Th,i.

hE a piecewise constant function taking the value diam(E) on each
edge E.
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Finite element discretization for blood flow

Preliminaries

Let φh represent a finite element function, we define the jump and the
average across any (internal) face F of the computational domain in the
usual ways,

JφhK(x) = lim
δ→0

[φh(x− δηF )− φh(x+ δηF )] , x ∈ F,

{φh}(x) = lim
δ→0

1

2
[φh(x− δηF ) + φh(x+ δηF )] , x ∈ F.

We also define the weighted average on Γij ,

{φh}w = αlφh,i + αwφh,j , (1)

where α = (αl, αw) are suitable weights such that αl + αw = 1.
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Finite element discretization for blood flow

Bilinear forms

For any uh, vh ∈ Vv and ph, qh ∈ Qh, we define,

a(uh, vh;wl) =

∫
Ω

(µ∇uh : ∇vh + (wl · ∇uh) · vh + κuh · vh)

−
∫
∂Ω

µ (∇uhη · vh +∇vhη · uh)

+

∫
Bh

(
1

2
(|wl · η| − wl · η) +

τu
hE

µ

)
uh · vh

b(ph, vh) = −
∫

Ω

ph∇ · vh +

∫
∂Ω

phvh · η,

d(ph, vh) =

∫
Γ

{ph}wJvh · ηΓK,
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Finite element discretization for blood flow

Bilinear forms

c(uh, vh) =

∫
Gh

τu
hE
{µ}wJuhK · JvhK

−
∫

Γ

({µ∇uhηΓ}w · JvhK + {µ∇vhηΓ} · JuhK) ,

ju(uh, vh) =

∫
Gh

τu
hE

Juh · ηΓKJvh · ηΓK

+

∫
Bh

τu
hE

µ(uh · η)(vh · η),

jp(ph, qh) =

∫
Fh
τphEJphKJqhK.
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Finite element discretization for blood flow

Mixed formulation

Find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh;wl) + c(uh, vh) + ju(uh, vh) + b(ph, vh)

+d(ph, vh) = F(vh), ∀vh ∈ Vh,
b(qh, uh) + d(qh, uh)− jp(ph, qh) = 0, ∀qh ∈ Qh,

where

F(vh) =

∫
Γin

(
1

2
(|wl · η| − wl · η) +

τu
hE

µ

)
uin · vh,l

+

∫
Γin

τu
hE

µ(uin · η)(vh,l · η)

−
∫

Γout

p0vh,l · ηl −
∫

Γadv

(p0 − 100)vh,w · ηw.
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Finite element discretization for drug delivery

Preliminaries

We use the Implicit-Explicit (IMEX) finite element method introduced by
Ferreira, Gudiño and de Oliveira [6, 7], in combination with the domain
decomposition method for advection-diffusion equations introduced by
Burman and Zunino [4] on each subdomain.
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Finite element discretization for drug delivery

Preliminaries

On each subregion we consider the space,

Vh,i = {vh ∈ C(Ωi) : vh|K ∈ Pk(K), ∀K ∈ Th,i},

where k ≥ 1.

As global approximation space, we define

Vh =

N⊕
i=1

Vh,i.
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Finite element discretization for drug delivery

Bilinear form

For any ch, vh ∈ Vh we define,

e(ch, vh) =

∫
Γ

(
τc
hE
{D}wJ∇chKJ∇dhK + {uh · η}{ch}wJdhK

− {D∇ch · η}wJdhK− {D∇dh · η}wJchK) .
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Finite element discretization for drug delivery

Plasma diffusion

Find ch,p ∈ Vh,p such that

ap(ch,p, vh) + e(ch,p, vh) = (
cn−1
h,p

∆t
, vh), ∀vh ∈ Vh,p,

where,

ap(ch,p, vh) =

∫
Ω

(ch,p
∆t

vh +
(
Dp(c

n−1
h,p )∇ch,p

+Dv(c
n−1
h,p )∇σ(cn−1

h,p )− γpuh,pch,p
)
· ∇vh

)
+

∫
Fh,p

τuh
2
E‖uh,p · η‖L∞(E)J∇ch,p · ηKJ∇dh · ηK.
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Finite element discretization for drug delivery

Drug diffusion in the polymer

Find ch,d ∈ Vh,p such that

ad(ch,d, vh) + e(ch,d, vh) = (
cn−1
h,d

∆t
, vh), ∀vh ∈ Vh,p,

where,

ad(ch,d, vh) =

∫
Ω

(ch,d
∆t

vh + (Dd(ch,p)∇ch,d

+(υ(ch,p)− γduh)ch,d) · ∇vh

+Kd

(
ds− cn−1

h,d

ds

)
ch,pH(sn−1

h )vh

)

+

∫
Fh,p

τuh
2
E‖uh,p · η‖L∞(E)J∇ch,d · ηKJ∇dh · ηK.
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Finite element discretization for drug delivery

Drug diffusion in the lumen and wall

Find ch,i ∈ Vh,i such that

ai(ch,i, vh) + e(ch,i, vh) = (
cn−1
h,i

∆t
, vh), ∀vh ∈ Vh,i,

where ,

ai(ch,i, vh) =

∫
Ωi

(ch,i
∆t

vh +
(
Di(c

n−1
h,i )∇ch,i − γiuich,i

)
· ∇vh

)
+

∫
Fh,i

τuh
2
E‖uh,i · η‖L∞(E)J∇ch,i · ηKJ∇dh · ηK.

for i = l, w.
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Figure : Simplified domain
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Figure : Computational domain, NT = 10314 and NV = 5306
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Numerical experiments

Figure : Velocity field
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Numerical experiments

Figure : Pressure
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Loading video
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Figure : Mass of drug in the wall vs the lumen
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Numerical experiments

Figure : Computational domain, NT = 10314 and NV = 5306
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Loading video
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Numerical experiments

Figure : Mass of drug different stent profiles
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Numerical experiments

Figure : Computational domain, NT = 10314 and NV = 5306
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Numerical experiments

Loading video
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Numerical experiments

Figure : Mass of drug in the wall plaque vs no plaque
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Numerical experiments

Figure : Computational domains, NT = 10314 and NV = 5306
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Numerical experiments

Figure : Mass of drug in the wall different positions
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