Numerical investigation of long range segregation models

Farid Bozorgnia
Department of Mathematics, Instituto Superior Técnico, Lisbon

Workshop on PDE's and Biomedical Applications December 4-6, 2014

The work was supported by the Colab Program UT Austin-Portugal

Outlook and Problem Description

- (A) Problem description.
- (B) Basic theorem and facts.
- (C) Numerical schemes.
- (D) Further directions and related problems
(A) Problems description

Two Models in spatial segregation:
■ Adjacent segregation: Particles annihilate on contact, common surface of separation.
Appears in modeling of population density.
(A) Problems description

Two Models in spatial segregation:
■ Adjacent segregation: Particles annihilate on contact, common surface of separation.
Appears in modeling of population density.

■ At Distance: Species interact at a distance from each other. More complex geometric problem: Recent work by L. Caffarelli, S. Partrizi, V. Quitalo, [CPQ]

Adjacent segregation model

- Let $\Omega \subset \mathbb{R}^{d}$ be a connected, bounded domain with smooth boundary and m be a fixed integer.

Adjacent segregation model

- Let $\Omega \subset \mathbb{R}^{d}$ be a connected, bounded domain with smooth boundary and m be a fixed integer.
- The density of i -th component $u_{i}(x): i=1, \cdots, m$ with the internal dynamic is prescribed by f_{i}.
- The steady-states of m competing components in Ω is given by

$$
\left\{\begin{array}{l}
-\Delta u_{i}^{\varepsilon}=-\frac{1}{\varepsilon} u_{i}^{\varepsilon}(x) \sum_{j \neq i}^{m} a_{i j}\left(u_{j}^{\varepsilon}(x)\right)^{\alpha}+f_{i}\left(x, u_{i}^{\varepsilon}(x)\right) \\
u_{i}>o \\
u_{i}(x)=\phi_{i}(x)
\end{array}\right.
$$

where $\alpha=1,2$.

Adjacent segregation model

- Let $\Omega \subset \mathbb{R}^{d}$ be a connected, bounded domain with smooth boundary and m be a fixed integer.
- The density of i -th component $u_{i}(x): i=1, \cdots, m$ with the internal dynamic is prescribed by f_{i}.
- The steady-states of m competing components in Ω is given by

$$
\left\{\begin{array}{lr}
-\Delta u_{i}^{\varepsilon}=-\frac{1}{\varepsilon} u_{i}^{\varepsilon}(x) \sum_{j \neq i}^{m} a_{i j}\left(u_{j}^{\varepsilon}(x)\right)^{\alpha}+f_{i}\left(x, u_{i}^{\varepsilon}(x)\right) & \text { in } \Omega \\
u_{i}>0 & \text { in } \Omega \\
u_{i}(x)=\phi_{i}(x) & \text { on } \partial \Omega
\end{array}\right.
$$

where $\alpha=1,2$.
■ The boundary values ϕ_{i} are non-negative and have disjoint supports on the boundary, i.e,

$$
\phi_{i} \cdot \phi_{j}=0 \quad \text { on } \quad \partial \Omega .
$$

■ With out loos of generality assume $a_{i j}=1, f_{i}\left(x, u_{i}\right)=0$. Theorem1[CTV]:
Let $U^{\varepsilon}=\left(u_{1}^{\varepsilon}, \ldots, u_{m}^{\varepsilon}\right)$ be a solution of system at fixed ε. Let $\varepsilon \rightarrow 0$, then there exists $U \in\left(H^{1}(\Omega)\right)^{m}$ such that for all $i=1, \ldots, m$:

1 up to a subsequences, $u_{i}^{\varepsilon} \rightarrow u_{i}$ strongly in $H^{1}(\Omega)$,
$2 u_{i} \cdot u_{j}=0$ if $i \neq j$ a.e in Ω,
$3 \Delta u_{i}=0$ in the set $\left\{u_{i}>0\right\}$.
4 Let x belongs to interface such that $m(x)=2$ then

$$
\lim _{y \rightarrow x} \nabla u_{i}(y)=-\lim _{y \rightarrow x} \nabla u_{j}(y) .
$$

Asymptotic behaviour as $\varepsilon \rightarrow 0$ in model 1

The limiting solution belong to the following class:

$$
\begin{gathered}
S=\left\{U=\left(u_{1}, \cdots, u_{m}\right) \in\left(H^{1}(\Omega)\right)^{m}: u_{i} \geq 0, u_{i} \cdot u_{j}=0 \text { if } i \neq j\right. \\
\left.u_{i}=\phi_{i} \text { on } \partial \Omega,-\Delta u_{i} \leq 0,-\Delta\left(u_{i}-\sum_{j \neq i} u_{j}\right) \geq 0\right\} .
\end{gathered}
$$

The Limit of system in the case $d=1, m=2$:

$$
\begin{cases}\Delta u_{1}^{\varepsilon}=\frac{1}{\varepsilon} u_{1}^{\varepsilon}(x) u_{2}^{\varepsilon}(x) & \text { in } \Omega \\ \Delta u_{2}^{\varepsilon}=\frac{1}{\varepsilon} u_{2}^{\varepsilon}(x) u_{1}^{\varepsilon}(x) & \text { in } \Omega\end{cases}
$$

The Limit of system in the case $m=2$

Theorem 2[CTV]: Let W be harmonic with the boundary data $\phi_{1}-\phi_{2}$. Let $u_{1}=W^{+}, u_{2}=-W^{-}$, then the pair $\left(u_{1}, u_{2}\right)$ is the limit configuration of any sequences $\left(u_{1}^{\varepsilon}, u_{2}^{\varepsilon}\right)$

$$
\left\|u_{i}^{\varepsilon}-u_{i}\right\|_{H^{1}(\Omega)} \leq C(\varepsilon)^{1 / 6} \quad \text { as } \varepsilon \rightarrow 0, \quad i=1,2
$$

Remark: The two-phases free boundary (talk of Rodrigues)

$$
\Delta u=\lambda^{+} \chi_{\{u>0\}}-\lambda^{-} \chi_{\{u<0\}}
$$

is spacial case with $u_{1}=u^{+}, u_{2}=-u^{-}, f_{1}=\lambda^{+}, f_{2}=\lambda^{-}$.

Segregation at distance

■ The system has some similarity with previous model, however the annihilation of the coefficient for u_{1} at the point x is not $u_{2}(x)$ any longer, but involves the values of u_{2} in a full neighborhood of the point x. Thus we need to prescribe u_{1} and u_{2} in a neighborhood of Ω.

Segregation at distance

■ The system has some similarity with previous model, however the annihilation of the coefficient for u_{1} at the point x is not $u_{2}(x)$ any longer, but involves the values of u_{2} in a full neighborhood of the point x. Thus we need to prescribe u_{1} and u_{2} in a neighborhood of Ω.

- Denote $(\partial \Omega)_{1}:=\left\{x \in \Omega^{c}: d(x, \Omega) \leq 1\right\}$.
- The solution of the first model can be used as initial guess in second model.

The Model of segregation at distance

The model is described by the following system

$$
\begin{cases}-\Delta u_{i}^{\varepsilon}=-\frac{1}{\varepsilon} u_{i}^{\varepsilon} \sum_{i \neq j} H\left(u_{j}^{\varepsilon}\right)(x) & \text { in } \Omega, \tag{1}\\ u_{i}(x)=\phi_{i}(x) & \text { in }(\partial \Omega)_{1} \\ i=1 \cdots m\end{cases}
$$

where

$$
H\left(u_{j}^{\varepsilon}\right)(x)=\int_{B_{1}(x)} u_{j}^{\varepsilon}(y) d y
$$

or

$$
H\left(u_{j}^{\varepsilon}\right)(x)=\sup _{y \in B_{1}(x)} u_{j}^{\varepsilon}(y)
$$

Assumptions: $\phi_{i}(x)$ for $i=1, \cdots, m$ are non-negative C^{1} functions such that have disjoint supports in distance more than one

$$
\left(\operatorname{supp} \phi_{i}(x)\right)_{1} \cap\left(\operatorname{supp} \phi_{j}(x)\right)_{1}=\emptyset .
$$

Existence and Uniqueness

Lemma

For each $\varepsilon>0$, there exist a unique positive solution $\left(u_{1}^{\epsilon}, \cdots, u_{m}^{\epsilon}\right)$ of system in (1).

Sketch of the Proof

■ Consider the harmonic extension u_{i}^{0} for $i=1, \cdots, m$ given by

$$
\begin{cases}-\Delta u_{i}^{0}=0 & \text { in } \Omega \tag{2}\\ u_{i}^{0}=\phi_{i} & \text { on } \partial \Omega\end{cases}
$$

■ Given u_{i}^{k} consider the solution of the following linear system

$$
\begin{cases}\Delta u_{i}^{k+1}=\frac{1}{\varepsilon} u_{i}^{k+1} \sum_{i \neq j} H\left(u_{j}^{k}\right)(x) & \text { in } \Omega, \tag{3}\\ u_{i}^{k+1}(x)=\phi_{i}(x) & \text { on }(\partial \Omega)_{1}\end{cases}
$$

Sketch of the Proof for Existence and Uniqueness

- The following inequalities hold:

$$
\begin{gathered}
u_{i}^{0} \geq u_{i}^{2} \cdots \geq u_{i}^{2 k} \geq \ldots u_{i}^{2 k+1} \geq \cdots u_{i}^{3} \geq u_{i}^{1}, \quad \text { in } \Omega . \\
u_{i}^{2 k} \rightarrow u_{i}^{\star} \quad \text { uniformly in } \Omega \\
u_{i}^{2 k+1} \rightarrow u_{i}^{\diamond} \quad \text { uniformly in } \Omega
\end{gathered}
$$

■ Next we show that

$$
u_{i}^{\star}=u_{i}^{\diamond}
$$

- Assume there exist another solution (w_{1}, \cdots, w_{n}) of (1), then
- We will prove that the following hold:

$$
\begin{equation*}
u_{i}^{2 k+1} \leq w_{i} \leq u_{i}^{2 k}, \quad \text { for } k \geq 0 \tag{4}
\end{equation*}
$$

which shows

$$
u_{i}=w_{i}
$$

Basic Estimates

For simplicity assume $m=2$:

$$
\begin{cases}-\Delta u^{\varepsilon}(x)=-\frac{u^{\varepsilon}(x)}{\varepsilon} \int_{B_{1}(x)} v^{\varepsilon}(y) d y & \text { in } \Omega, \\ -\Delta v^{\varepsilon}(x)=-\frac{v^{\varepsilon}(x)}{\varepsilon} \int_{B_{1}(x)} u^{\varepsilon}(y) d y & \text { in } \Omega, \tag{5}\\ u(x)=\phi(x) & \text { in }(\partial \Omega)_{1}, \\ v(x)=\varphi(x) & \text { in }(\partial \Omega)_{1} .\end{cases}
$$

Let $\left(u^{\varepsilon}, v^{\varepsilon}\right)$ be a solution of system (5). There exist constant C_{1}, C_{2} independent of ε such that if $\left(u^{\varepsilon}, v^{\varepsilon}\right)$ be a solution of system (5) then

- $\int_{\Omega} u^{\varepsilon}\left(\int_{B_{1}(x)} v^{\varepsilon}(y) d y\right) d x \leq C_{1} \varepsilon$,
- $\int_{\Omega}\left|\nabla u^{\varepsilon}\right|^{2} d x \leq C_{2}$,
- $\int_{\Omega}\left|\nabla v^{\varepsilon}\right|^{2} d x \leq C_{2}$,

■ As ε tends to zero there exist subsequences $\left\{u^{\varepsilon_{j}}\right\}$ and $\left\{v^{\varepsilon_{j}}\right\}$ and non-negative u, v such that

$$
u^{\varepsilon_{j}} \rightarrow u \quad \text { in } W^{1,2}, \quad v^{\varepsilon_{j}} \rightarrow v \quad \text { in } W^{1,2} .
$$

Qualitative Properties

Theorem (L. Caffarelli, S. Patrizi, and V. Quitalo)

Let u and v be the limiting solutions as ε tends to zero. Then

- u and v are locally Lipschitz continuous.
- The free boundaries $\Gamma_{1}=\partial\{x \in \Omega: u(x)>0\}$,
$\Gamma_{2}=\partial\{x \in \Omega: v(x)>0\}$, have distance one from each other.
- In 2-dimensions the free boundaries Γ_{1}, Γ_{2} are C^{1} curves.
- The functions u and v are harmonic in their supports.

The Laplacians $\Delta u, \Delta v$, are jump measures along Γ_{1}, Γ_{2},

$$
\Delta u=\left.u_{\nu} H^{n-1}\right|_{\Gamma_{1}} \quad \Delta v=\left.v_{\nu} H^{n-1}\right|_{\Gamma_{2}} \text { in } B_{r} \text { in distributional sense. }
$$

Assume $0 \in \Gamma_{1}$, also let e_{2} be exterior normal derivative at 0 . We obtain a corresponding point in Γ_{2} which has distance one from 0 .

Qualitative Properties

Theorem (L. Caffarelli, S. Patrizi, and V. Quitalo)

- Let $D_{h}=B_{h}(0) \cap\left\{x: d\left(x, \Gamma_{1}\right) \leq h^{2}\right\}$ for a small fixed h. Let E_{h} be the image of D_{h} through $y=x+\nu(x)$ with $x \in D_{h}$. Then,

$$
\begin{aligned}
\int_{D_{h}} \Delta u d x & =\int_{E_{h}} \Delta v d x \\
\frac{u_{\nu}(0)}{v_{\nu}\left(e_{2}\right)} & =\frac{\kappa(0)}{\kappa\left(e_{2}\right)},
\end{aligned}
$$

where $\kappa(x)$: mean curvature.

- Let $\Gamma_{1}^{h}=\Gamma_{1} \cap B_{h}(0)$, and $\Gamma_{2}^{h}=\left\{x+\nu(x): x \in \Gamma_{1}^{h}\right\}$. Then as $h \rightarrow 0$ we have

$$
\frac{\int_{\Gamma_{2}^{h}} 1 d A}{\int_{\Gamma_{2}^{h} 1 d A}} \rightarrow \frac{\kappa(0)}{\kappa\left(e_{2}\right)}
$$

Free Boundary Condition in dimension one

$$
\begin{cases}u_{\varepsilon}^{\prime \prime}(x)=\frac{u_{\varepsilon}(x)}{\epsilon} \sup _{y \in(x-1, x+1)} v_{\varepsilon}(y) & \text { in }(-a, a) \tag{6}\\ v_{\varepsilon}^{\prime \prime}(x)=\frac{v_{\varepsilon}(x)}{\varepsilon} \sup _{y \in(x-1, x+1)} u^{\varepsilon}(y) & \text { in }(-a, a) \\ u(x)=\phi(x) & \text { in }(-a-1,-a) \\ v(x)=\varphi(x) & \text { in }(a, a+1)\end{cases}
$$

We have

$$
\begin{gathered}
\sup _{y \in(x-1, x+1)} v_{\varepsilon}(y)=v_{\varepsilon}(x+1) \\
v_{\varepsilon}^{\prime \prime}(x+1)=\frac{v_{\varepsilon}(x+1)}{\varepsilon} \sup _{y \in(x, x+2)} u_{\varepsilon}(y)=\frac{v_{\varepsilon}(x+1)}{\varepsilon} u_{\varepsilon}(x)
\end{gathered}
$$

This shows for every ε

$$
\begin{aligned}
& \quad\left(u_{\varepsilon}(x)-v_{\varepsilon}(x+1)\right)^{\prime \prime}=0 \\
& \Rightarrow(u(x)-v(x+1))^{\prime \prime}=0, \quad \text { and } \quad(v(x)-u(x-1))^{\prime \prime}=0 .
\end{aligned}
$$

The free Boundary condition in dimension two

Lemma

Let u and v be the limiting solutions as ε tends to zero. Then

$$
\begin{cases}-\Delta\left(u(x)-v\left(x-\frac{\nabla u(x)}{|\nabla u(x)|}\right)=0\right. & \text { in }\{u>0\}, \tag{7}\\ -\Delta\left(v(x)-u\left(x-\frac{\nabla v(x)}{|\nabla v(x)|}\right)=0\right. & \text { in }\{v>0\} .\end{cases}
$$

Approximation for Model 1

For simplicity assume that $n=1, m=2$. We use the facts $u-v$ is harmonic in $\Omega, u \cdot v=0, u, v \geq 0$. Using finite difference

$$
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}-\frac{v_{i+1}-2 v_{i}+v_{i-1}}{h^{2}}=0
$$

Let $\bar{u}_{i}=\frac{u_{i+1}+u_{i-1}}{2}, \quad \bar{v}_{i}=\frac{v_{i+1}+v_{i-1}}{2}$. Imposing the conditions $u_{i} \cdot v_{i}=0, u_{i} \geq 0$ and $v_{i} \geq 0$, we will obtain u_{i} and v_{i} by the following formula

For $\quad i=2 \cdots n-1$

$$
\left\{\begin{array}{l}
u_{i}^{(k+1)}=\max \left(\frac{u_{i+1}^{(k)}+u_{i-1}^{(k)}}{2}-\frac{v_{i+1}^{(k)}+v_{i-1}^{(k)}}{2}, 0\right)=\max \left(\bar{u}_{i}^{k}-\bar{v}_{i}^{k}, 0\right) \\
v_{i}^{(k+1)}=\max \left(\frac{v_{i+1}^{(k)}+v_{i-1}^{(k)}}{2}-\frac{u_{i+1}^{(k)}+u_{i-1}^{(k)}}{2}, 0\right)=\max \left(\bar{v}_{i}^{k}-\bar{u}_{i}^{k}, 0\right)
\end{array}\right.
$$

Iterative Method for second Model in dimension one

■ Let $n=1, \Omega=(-a,+a)$. The limiting u and v satisfy

$$
\left\{\begin{array}{l}
(u(x)-v(x+1))^{\prime \prime}=0 \\
(v(x)-u(x-1))^{\prime \prime}=0
\end{array}\right.
$$

- Discretize Ω by $-a=x_{0}, x_{1}=x_{0}+h, \cdots x_{N}=+a$ be of $\Omega=(-a,+a)$ with L be such that $L \cdot h=1$.
- Let W be harmonic with $\phi-\varphi$ as boundary data. Set $u^{0}=W^{+}, v^{0}=W^{-}$.
- Update u_{i} and v_{i} by

$$
\left\{\begin{array}{l}
u^{(k+1)}(i)=\max \left(\bar{u}_{i}^{(k)}-\bar{v}_{i+L}^{(k)}, 0\right) \\
v^{(k+1)}(i)=\max \left(\bar{v}_{i}^{(k)}-\bar{u}_{i+L}^{(k)}, 0\right)
\end{array}\right.
$$

Iterative Method

Examples

- The $\Omega=B_{2}(0) \backslash B_{.5}(0)$. The boundary values are

$$
u=1 \quad \text { on } \partial B_{.5}(0) \quad v=1 \quad \text { on } \partial B_{2}(0)
$$

Height: u+v

Examples

- The below figure is the case that $\Omega=B_{1}$ and $\phi_{1}(x)=\phi_{1}(x)=\left|\sin \left(\frac{3}{2} \Theta\right)\right|, \phi_{3}(x)=\left|3 \sin \left(\frac{3}{2} \Theta\right)\right|$ with the same process we got the interfaces after 8 iteration.

Example

■ we applied second method with $\Omega=[0,1] \times[0,1]$ $, \phi_{1}=1-x^{2}, \phi_{2}=1-y^{2}, \phi_{3}=1-x^{2}, \phi_{4}=1-y^{2}$

References

睩 L. Caffarelli, S. Patrizi, and V. Quitalo, A non locall segregation model(preprint)

目 M. Conti, S. Terracini, and G. Verzini, Asymptotic estimate for spatial segregation of competitive systems, Advances in Mathematics. 195, 524-560, (2005).
(in M. Conti, S. Terracini, and G. Verzini, A varational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J. 54, no 3, 779-815, (2005).

Thank you, Questions?

