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Outlook and Problem Description

(A) Problem description.

(B) Basic theorem and facts.

(C) Numerical schemes.

(D) Further directions and related problems
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(A) Problems description
Two Models in spatial segregation:

Adjacent segregation: Particles annihilate on contact, common
surface of separation.
Appears in modeling of population density.

Competition models of Lotka-Volterra type.

At Distance: Species interact at a distance from each other.
More complex geometric problem: Recent work by L. Caffarelli,
S. Partrizi, V. Quitalo, [CPQ]
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Adjacent segregation model

Let Ω ⊂ Rd be a connected, bounded domain with smooth boundary
and m be a fixed integer.

The density of i-th component ui (x) : i = 1, · · · ,m with the internal
dynamic is prescribed by fi .

The steady-states of m competing components in Ω is given by
−∆uεi = −1

εu
ε
i (x)

∑m
j 6=i aij (uεj (x))α + fi (x , u

ε
i (x)) in Ω

ui > o in Ω
ui (x) = φi (x) on ∂Ω,

where α = 1, 2.

The boundary values φi are non-negative and have disjoint supports
on the boundary, i.e,

φi · φj = 0 on ∂Ω.
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The goal: study the system as ε→ 0 in model 1

With out loos of generality assume aij = 1, fi (x , ui ) = 0.
Theorem1[CTV]:

Let Uε = (uε1, ..., u
ε
m) be a solution of system at fixed ε. Let ε→ 0,

then there exists U ∈ (H1(Ω))m such that for all i = 1, ...,m:

1 up to a subsequences, uεi → ui strongly in H1(Ω),
2 ui · uj = 0 if i 6= j a.e in Ω,
3 ∆ui = 0 in the set {ui > 0}.
4 Let x belongs to interface such that m(x) = 2 then

lim
y→x
∇ui (y) = − lim

y→x
∇uj(y).

Figure:
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Asymptotic behaviour as ε→ 0 in model 1

The limiting solution belong to the following class:

S = {U = (u1, · · · , um) ∈ (H1(Ω))m : ui ≥ 0, ui · uj = 0 if i 6= j

ui = φi on ∂Ω, −∆ui ≤ 0 ,−∆(ui −
∑
j 6=i

uj) ≥ 0}.

The Limit of system in the case d = 1, m = 2:{
∆uε1 = 1

εu
ε
1(x)uε2(x) in Ω

∆uε2 = 1
εu

ε
2(x)uε1(x) in Ω

Figure:
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The Limit of system in the case m = 2

Theorem 2[CTV]: Let W be harmonic with the boundary data φ1 − φ2.
Let u1 = W+, u2 = −W−, then the pair(u1, u2) is the limit configuration
of any sequences (uε1, u

ε
2)

‖ uεi − ui ‖H1(Ω)≤ C (ε)1/6 as ε→ 0, i = 1, 2.

Remark: The two-phases free boundary (talk of Rodrigues )

∆u = λ+χ{u>0} − λ−χ{u<0}

is spacial case with u1 = u+, u2 = −u−, f1 = λ+, f2 = λ−.

Figure:
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Segregation at distance

The system has some similarity with previous model, however the
annihilation of the coefficient for u1 at the point x is not u2(x) any
longer, but involves the values of u2 in a full neighborhood of the
point x . Thus we need to prescribe u1 and u2 in a neighborhood of Ω.

Denote (∂Ω)1 := {x ∈ Ωc : d(x ,Ω) ≤ 1}.
The solution of the first model can be used as initial guess in second
model.

Figure:
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The Model of segregation at distance

The model is described by the following system
−∆uεi = −1

εu
ε
i

∑
i 6=j H(uεj )(x) in Ω,

ui (x) = φi (x) in (∂Ω)1,
i = 1 · · ·m.

(1)

where

H(uεj )(x) =

∫
B1(x)

uεj (y)dy

or
H(uεj )(x) = sup

y∈B1(x)
uεj (y).

Assumptions: φi (x) for i = 1, · · · ,m are non-negative C 1 functions such
that have disjoint supports in distance more than one

(supp φi (x))1 ∩ (supp φj(x))1 = ∅.
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Existence and Uniqueness

Lemma

For each ε > 0, there exist a unique positive solution (uε1, · · · , uεm) of
system in (1).

Sketch of the Proof

Consider the harmonic extension u0
i for i = 1, · · · ,m given by{

−∆u0
i = 0 in Ω,

u0
i = φi on ∂Ω,

(2)

Given uki consider the solution of the following linear system{
∆uk+1

i = 1
εu

k+1
i

∑
i 6=j H(ukj )(x) in Ω,

uk+1
i (x) = φi (x) on (∂Ω)1,

(3)
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Sketch of the Proof for Existence and Uniqueness

The following inequalities hold:

u0
i ≥ u2

i · · · ≥ u2k
i ≥ . . . u2k+1

i ≥ · · · u3
i ≥ u1

i , inΩ.

u2k
i → u?i uniformly in Ω

u2k+1
i → u�i uniformly in Ω

Next we show that
u?i = u�i

Assume there exist another solution (w1, · · · ,wn) of (1), then

We will prove that the following hold:

u2k+1
i ≤ wi ≤ u2k

i , for k ≥ 0, (4)

which shows
ui = wi .
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Basic Estimates

For simplicity assume m = 2 :
−∆uε(x) = −uε(x)

ε

∫
B1(x) v

ε(y)dy in Ω,

−∆v ε(x) = − vε(x)
ε

∫
B1(x) u

ε(y)dy in Ω,

u(x) = φ(x) in (∂Ω)1,
v(x) = ϕ(x) in (∂Ω)1.

(5)

Let (uε, v ε) be a solution of system (5). There exist constant C1,C2

independent of ε such that if (uε, v ε) be a solution of system (5) then∫
Ω uε(

∫
B1(x) v

ε(y) dy) dx ≤ C1ε,∫
Ω |∇u

ε|2 dx ≤ C2,∫
Ω |∇v

ε|2 dx ≤ C2,

As ε tends to zero there exist subsequences {uεj} and {v εj} and
non-negative u, v such that

uεj → u in W 1,2, v εj → v in W 1,2.
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Qualitative Properties

Theorem (L. Caffarelli, S. Patrizi, and V. Quitalo)

Let u and v be the limiting solutions as ε tends to zero. Then

u and v are locally Lipschitz continuous.

The free boundaries Γ1 = ∂{x ∈ Ω : u(x) > 0},
Γ2 = ∂{x ∈ Ω : v(x) > 0}, have distance one from each other.

In 2-dimensions the free boundaries Γ1, Γ2 are C 1 curves.

The functions u and v are harmonic in their supports.

The Laplacians ∆u,∆v , are jump measures along Γ1, Γ2,

∆u = uνH
n−1 |Γ1 ∆v = vνH

n−1 |Γ2 in Br in distributional sense.

Assume 0 ∈ Γ1, also let e2 be exterior normal derivative at 0. We obtain a
corresponding point in Γ2 which has distance one from 0.
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Qualitative Properties

Theorem (L. Caffarelli, S. Patrizi, and V. Quitalo)

Let Dh = Bh(0) ∩ {x : d(x , Γ1) ≤ h2} for a small fixed h. Let Eh be
the image of Dh through y = x + ν(x) with x ∈ Dh. Then,∫

Dh

∆u dx =

∫
Eh

∆v dx

uν(0)

vν(e2)
=

κ(0)

κ(e2)
,

where κ(x) : mean curvature.

Let Γh
1 = Γ1 ∩ Bh(0), and Γh

2 = {x + ν(x) : x ∈ Γh
1}. Then as h→ 0

we have ∫
Γh

2
1dA∫

Γh
21dA

→ κ(0)

κ(e2)
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Free Boundary Condition in dimension one



u
′′
ε (x) = uε(x)

ε sup
y∈(x−1,x+1)

vε(y) in (−a, a),

v
′′
ε (x) = vε(x)

ε sup
y∈(x−1,x+1)

uε(y) in (−a, a),

u(x) = φ(x) in (−a− 1,−a),
v(x) = ϕ(x) in (a, a + 1).

(6)

We have
sup

y∈(x−1,x+1)
vε(y) = vε(x + 1)

v
′′
ε (x + 1) =

vε(x + 1)

ε
sup

y∈(x ,x+2)
uε(y) =

vε(x + 1)

ε
uε(x)

This shows for every ε

(uε(x)− vε(x + 1))
′′

= 0.

⇒ (u(x)− v(x + 1))
′′

= 0, and (v(x)− u(x − 1))
′′

= 0.
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The free Boundary condition in dimension two

Lemma

Let u and v be the limiting solutions as ε tends to zero. Then{
−∆(u(x)− v(x − ∇u(x)

|∇u(x)|) = 0 in{u > 0},
−∆(v(x)− u(x − ∇v(x)

|∇v(x)|) = 0 in{v > 0}.
(7)
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Approximation for Model 1

For simplicity assume that n = 1,m = 2. We use the facts u − v is
harmonic in Ω, u · v = 0, u, v ≥ 0. Using finite difference

ui+1 − 2ui + ui−1

h2
− vi+1 − 2vi + vi−1

h2
= 0

Let ui =
ui+1+ui−1

2 , v i =
vi+1+vi−1

2 . Imposing the conditions
ui · vi = 0, ui ≥ 0 and vi ≥ 0, we will obtain ui and vi by the following
formula

For i = 2 · · · n − 1
u

(k+1)
i = max

(
u

(k)
i+1+u

(k)
i−1

2 − v
(k)
i+1+v

(k)
i−1

2 , 0

)
= max

(
uki − vki , 0

)
v

(k+1)
i = max

(
v

(k)
i+1+v

(k)
i−1

2 − u
(k)
i+1+u

(k)
i−1

2 , 0

)
= max

(
vki − uki , 0

)
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Iterative Method for second Model in dimension one

Let n = 1,Ω = (−a,+a). The limiting u and v satisfy{
(u(x)− v(x + 1))

′′
= 0,

(v(x)− u(x − 1))
′′

= 0.

Discretize Ω by−a = x0, x1 = x0 + h, · · · xN = +a be of Ω = (−a,+a)
with L be such that L · h = 1.

Let W be harmonic with φ− ϕ as boundary data. Set
u0 = W+, v0 = W−.

Update ui and vi by u(k+1)(i) = max
(
u

(k)
i − v

(k)
i+L, 0

)
v (k+1)(i) = max

(
v

(k)
i − u

(k)
i+L, 0

)
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Iterative Method
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Examples

The Ω = B2(0) \ B.5(0). The boundary values are

u = 1 on ∂B.5(0) v = 1 on ∂B2(0),

−2
−1.5

−1
−0.5

0
0.5

−2

−1.5

−1

−0.5

0

  Height: u+v

x
x
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Examples

The below figure is the case that Ω = B1 and
φ1(x) = φ1(x) = |sin( 3

2 Θ)|, φ3(x) = |3sin( 3
2 Θ)| with the same process we

got the interfaces after 8 iteration.
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Example

we applied second method with Ω = [0, 1]× [0, 1]
,φ1 = 1− x2, φ2 = 1− y2, φ3 = 1− x2, φ4 = 1− y2
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Thank you, Questions?
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