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The big question
Do we do the right thing?

If population
dynamics is based on
individuals, why do

people use differential
equations?



Objectives
...and side effects

We will not answer the previous questions.§

But, we will analyze in detail some simple examples.©
We start from a simple model in population dynamics and obtain, in the end, an
ordinary differential equations.

As side-effects:

1 We establish the validity of the ODE model;

2 We find a better differential equation. This lead us naturally to singular
partial differential equations.

3 We use the differential equation to obtain informations of the discrete
process
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The Wright-Fisher process
General definitions

We consider N individuals of 2 different types.

For each type we define a fitness Ψ(A),Ψ(B).
The state of the population is given by x ∈ [0, 1] (the fraction of type A
individuals).
The next generation is obtained from the previous one: each individual descend
from one of the types, with probability proportional to the fitness.
The transition probability from a state y to a new state x is given by

ΘN(y → x) =
N!

(xN)!((1− x)N)!

(
yΨB)(y)

)xN (
(1− y)Ψ(B)(y)

)(1−x)N(
yΨ(A)(y) + (1− y)Ψ(B)(y)

)N .
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Discrete and continuous modeling

The probability P(N,∆t)(x, t) to find the population at the state x at time t
evolves according to the Master equation:

P(N,∆t)(x , t + ∆t) =
∑
y

ΘN(y → x)P(N,∆t)(y , t) .

In a different approach, the evolution of a given type in population can be
modelled using the replicator differential equation:

ẋ = x
(
ψ(A)(x)− ψ̄(x)

)
= x(1− x)(ψ(A) − ψ(B)) .



Discrete and continuous modeling

The probability P(N,∆t)(x, t) to find the population at the state x at time t
evolves according to the Master equation:

P(N,∆t)(x , t + ∆t) =
∑
y

ΘN(y → x)P(N,∆t)(y , t) .

In a different approach, the evolution of a given type in population can be
modelled using the replicator differential equation:
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Simulation for N = 50,
Ψ(A)(x) = 2,
Ψ(B)(x) = 1 + 3x .

The replicator
dynamics is given by
ẋ = x(1− x)(1− 3x).
The probability
distribution initially
concentrates in three
points: x = 0, x = 1
and x = x∗ = 1

3 . We
accelerate the evolution
and nothing seems to
happen. After a long
time, a diffusion
process dominates. . .



The Wright-Fisher process
Transition matrix for two types

Let P(N,∆t)(x , t) be the probability of at time t there are xN, x = 0, 1
N , . . . , 1,

mutants in a population of fixed size N evolving with time steps of order ∆t.

The evolution is given by

P(N,∆t)(x , t + ∆t) =
∑

y=0, 1
N ,...,1

ΘN(y → x)P(N,∆t)(y , t)

The evolution equation can be written

P(t + ∆t) = MP(t)

where M is a stochastic matrix and

P(t) :=
(
P(N,∆t)(0, t),P(N,∆t)(1/N, t), · · · ,P(N,∆t)(1, t)

)
.

This implies that P(κ∆t) = MκP(0).
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The Wright-Fisher process
Spectral theory

Theorem

lim
κ→∞

Mκ =


1 1− F1 · · · 1− FN
0 0 · · · 0

...
0 F1 · · · FN

 .

where the Fn satisfy Fn =
∑N

m=0 ΘN
( n

N →
m
N

)
Fm, with F0 = 0 and FN = 1.

In particular, any stationary state will be concentrated at the endpoints.
If 1 denotes the vector (1, 1, . . . , 1)†, F = (F0,F1, . . . ,FN)† and if 〈·, ·, 〉 denotes
the usual inner product, then we have that 〈P(t), 1〉 = 〈P(0), 1〉 and
〈P(t),F〉 = 〈P(0),F〉.



Two time scales

The last theorem states that “given enough time, all genes will drift to
extinction or fixation” (M. Kimura).

However, “in the long run, we are all dead” (J. M. Keynes).
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Continuous models
General idea: 2 types

We look for a differential equation that approximates the discrete evolution of P
when N →∞ and ∆t → 0.

We introduce the following assumptions:

1 The weak selection principle:

lim
N→∞,∆t→0

Ψ(i)(x) = 1 .

More precisely, we assume that Ψ(i)(x) = 1 + (∆t)νψ(i)(x).

2 The time-step is such that κ(∆t) = N−µ.

3 The limit function p = limN→∞,∆t→0
P(N,∆t)

1/N is such that

p
(
x ± 1

N
, t
)

= p(x , t)± 1
N
∂xp(x , t) +

1
2N2 ∂

2
xp(x , t) +O(N−3) ,

p (x , t + ∆t) = p(x , t) + (∆t) ∂tp(x , t) +O
(

(∆t)2
)
.
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Continuous models
Formal asymptotic: Wright-Fisher process for two types

Using all these assumptions, we find the asymptotic expansion:

∂tp = − 1
(∆t)1−ν ∂x

(
x(1− x)

(
ψ(A)(x)− ψ(B)(x)

)
p
)

+
1

2N∆t
∂2

x (x(1− x)p) .

Depending on the choice of µ and ν, we have the diffusion equation

∂tp =
1
2
∂2

x (x(1− x)p) ;

the (partial differential version of the) replicator equation:

∂tp = −∂x

(
x(1− x)

(
ψ(A)(x)− ψ(B)(x)

)
p
)

;

or the replicator-diffusion equation (generalized Kimura equation)

∂tp =
κ

2
∂2

x (x(1− x)p)− ∂x

(
x(1− x)

(
ψ(A)(x)− ψ(B)(x)

)
p
)
.
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Continuous models
Formal asymptotic: Wright-Fisher process for two types

The invariants become the following conservation laws:

d
dt

∫ 1

0
p(x , t) dx = 0,

d
dt

∫ 1

0
π(x)p(x , t) dx = 0,

where π satisfies
κ

2
π′′ +

(
ψ(A)(x)− ψ(B)(x)

)
π′ = 0, π(0) = 0, π(1) = 1 .

This implies:

π(x) =

∫ x
0 exp

[
− 2
κ

∫ x′

0

(
ψ(A)(x ′′)− ψ(B)(x ′′)

)
dx ′′

]
dx ′∫ 1

0 exp
[
− 2
κ

∫ x′

0

(
ψ(A)(x ′′)− ψ(B)(x ′′)

)
dx ′′

]
dx ′

.

If the initial condition is pI = δx0 , then the fixation probability is π(x0).
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Fixation probability
The quasi-neutral case (κ� 1)

Fixation probability for
N = 50 and pay-off matrix(
51 51
50 50

)
. The line

indicates the function
π(x) = 1−e−1.986x

1−e−1.986 .

In the quasi-neutral case, π(x) ≈ 1−e−
2ψ(0)x
κ

1−e−
2ψ(0)
κ

.



Fixation probability
The dominance case (κ� 1 and ψ > 0)

Fixation probability for
N = 500 and pay-off

matrix
(
11 12
10 9

)
. The

line indicates the function
π(x) = 1− e−339.6x .

In the dominance case, π(x) ≈ 1− e−
2(ψ(0))x

κ .



Fixation probability
The coordination case (κ� 1 and ψ(0) < 0 < ψ(1)).

Fixation probability for
N = 500 and pay-off

matrix
(
4 1
1 3

)
. The line

indicates the function
π(x) = N (73.8(x − 0.40)2).

In the coordination case, π(x) ≈ N
(√

ψ′(x∗)
κ

(x − x∗)
)
, where

N (z) = 1√
2π

∫ z
−∞ e−s2/2ds is the cumulative Normal distribution.



Time to fixation
The quasi-neutral case (κ� 1)

Time to fixations for
N = 50 and pay-off

matrix
(
51 51
50 50

)
.

The line indicates
the function θ(x)
with 2

κ ≈ 91.9 and
2ψ(0)
κ2 ≈ 85.4.

θ(x) ≈ −
2

κ
[x log x + (1− x) log(1− x)] +

2ψ(0)

κ2

[
x2 log x − (1− x)2 log(1− x)

]



Time to fixation
The dominance case (κ� 1 and ψ > 0)

Fixation probability
for N = 500 and
pay-off matrix(
11 12
10 9

)
. The

line indicates the
function below with
with β−1 = 3.53,
γ = 2.51 and
α−1 log κ = −49.7.

θ(x) = − 1
β
log

x(x + γ(1− x))γ−1

(1− x)γ
− 1
α
log κ,



Time to fixation
The coordination case (κ� 1 and ψ(0) < 0 and ψ(1) > 0)

Fixation probability for
N = 500 and pay-off

matrix
(
4 1
1 3

)
. The red

line is given by the
equation below with
(γ,A,B) =
(0.620, 2.57, 4.28)

θ(x) ≈ A log
x1−γ(1− x)γ

|x − x∗| + B



Time to fixation
The coordination case (κ� 1 and ψ(0) < 0 and ψ(1) > 0)

Fixation probability for
N = 500 and pay-off

matrix
(
4 1
1 3

)
. The red

line is given by the
equation below with
(γ,A,B) =
(0.298, 2.62, 4.16)

θ(x) ≈ A log
x1−γ(1− x)γ

|x − x∗| + B



Time to fixation
The coordination case (κ� 1 and ψ(0) < 0 and ψ(1) > 0)

Fixation probability for
N = 500 and pay-off

matrix
(
4 1
1 3

)
. The black

line is given by the
equation
below with (A,B,C ,D,E) =

(4.57, 618,−0.245, 9.03,−0.0573).

θ(x) ≈ Ae−B(x−x∗)2 + C log
x

1− x
+ D + Eπ(x)



Conclusions

We constructed a degenerated parabolic partial differential equation
supplemented by conservation laws that works as an approximation of the
discrete Wright-Fisher processes.

Its initial dynamics is given by the replicator dynamics; the replicator
equation models the most probable state in the interior of the simplex (not
the average of the trait).

We used the PDE to obtain simple expressions for the fixation probability
and the fixation time in the Wright-Fisher process.

Further information: papers by C., Souza and Danilkina (Theor. Pop. Biol.
2009, Comm. Math. Sci. 2009, J. Math. Biol 2014, Ecol. Comp. 2014 and
ArXiv.)

THE END



Conclusions

We constructed a degenerated parabolic partial differential equation
supplemented by conservation laws that works as an approximation of the
discrete Wright-Fisher processes.

Its initial dynamics is given by the replicator dynamics; the replicator
equation models the most probable state in the interior of the simplex (not
the average of the trait).

We used the PDE to obtain simple expressions for the fixation probability
and the fixation time in the Wright-Fisher process.

Further information: papers by C., Souza and Danilkina (Theor. Pop. Biol.
2009, Comm. Math. Sci. 2009, J. Math. Biol 2014, Ecol. Comp. 2014 and
ArXiv.)

THE END



Conclusions

We constructed a degenerated parabolic partial differential equation
supplemented by conservation laws that works as an approximation of the
discrete Wright-Fisher processes.

Its initial dynamics is given by the replicator dynamics; the replicator
equation models the most probable state in the interior of the simplex (not
the average of the trait).

We used the PDE to obtain simple expressions for the fixation probability
and the fixation time in the Wright-Fisher process.

Further information: papers by C., Souza and Danilkina (Theor. Pop. Biol.
2009, Comm. Math. Sci. 2009, J. Math. Biol 2014, Ecol. Comp. 2014 and
ArXiv.)

THE END



Conclusions

We constructed a degenerated parabolic partial differential equation
supplemented by conservation laws that works as an approximation of the
discrete Wright-Fisher processes.

Its initial dynamics is given by the replicator dynamics; the replicator
equation models the most probable state in the interior of the simplex (not
the average of the trait).

We used the PDE to obtain simple expressions for the fixation probability
and the fixation time in the Wright-Fisher process.

Further information: papers by C., Souza and Danilkina (Theor. Pop. Biol.
2009, Comm. Math. Sci. 2009, J. Math. Biol 2014, Ecol. Comp. 2014 and
ArXiv.)

THE END



Conclusions

We constructed a degenerated parabolic partial differential equation
supplemented by conservation laws that works as an approximation of the
discrete Wright-Fisher processes.

Its initial dynamics is given by the replicator dynamics; the replicator
equation models the most probable state in the interior of the simplex (not
the average of the trait).

We used the PDE to obtain simple expressions for the fixation probability
and the fixation time in the Wright-Fisher process.

Further information: papers by C., Souza and Danilkina (Theor. Pop. Biol.
2009, Comm. Math. Sci. 2009, J. Math. Biol 2014, Ecol. Comp. 2014 and
ArXiv.)

THE END


	Introduction
	The Wright-Fisher process
	The Wright-Fisher process: numerics
	The discrete case
	The ``continuation''
	Time to Fixation
	Conclusions

