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Due to numerous applications in the real-world
phenomena, convection-diffusion in fluid mixtures in
porous media is a very active area of research.

In fact, till now, many papers have been devoted either to
the double diffusive-convection or to multi-component
diffusive-convection since it appears in numerous physical
problems such as the spreading of pollutants,
contaminant transport in saturated soil, underground
disposal of nuclearwastes and food processing.
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Representative Elementary Volume of Porous Medium

Φ =
Volume of Void Space

Total Volume
(Porosity)
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Horton-Rogers-Lapwood Problem
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Cells Pattern Formation
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....when Convective Motions arise: R2 > R2
C

R2 =
gα β

kν
d4 Rayleigh Number

Lord Rayleigh “On convective currents ... the under side" Phil. Mag 32
(1916)



Introduction Mathematical Model Main boundary value problem Salted from above Salted from above/below

Some References

D.A. Nield-A.Bejan: Convection in porous media,
Springer-Verlag (2013)
B.Straughan: The Energy Method, Stability, and Nonlinear
Convection, Springer (2004)
B. Straughan: Stability and Wave Motion in Porous Media,
Springer, 115, (2008)
K.E.Torrance-D.L.Turcotte: J. Fluid Mech. 47 (1971), 113-125
J. Tracey: Continuum Mech. Thermodyn. 8 (1996), 361-381
B. Straughan-D.W.Walker:Fluid Dyn. Res. 19 (1997), 77-89

G. Mulone-S.Rionero: Rend. Lincei 9 (1998), 221-236



Introduction Mathematical Model Main boundary value problem Salted from above Salted from above/below

B. Straughan-J.Tracey:Acta Mechanica 133 (1999),219-239
S.Lombardo-G.Mulone-B.Straughan: Math. Methods Appl.
Sci. 24 (2001), 1229-1246
S. Rionero: J. Math. Anal. Appl. 333 (2007), 1036-1057
S. Rionero-L. Vergori: Acta Mechanica 210 (1009), 221-240
S. Rionero: Internat. J. Engrg. Sci. 48 (2010), 1519-1533
F.C.-M. Gentile-A.A.Hill: Int. J. Heat Mass Tran. 54 (2011),
1622-1626
S. Rionero: Int. J. Nonlinear Mech. 47 (2012), 61-66

S.Rionero: Acta Mech. 222 (2011), 261-272

F.C., R. De Luca: Int. J. Nonlinear Mech., 47 (7), (2013),
799-805.
F.C., R. De Luca: Rend. Acc. Lincei (2013)



Introduction Mathematical Model Main boundary value problem Salted from above Salted from above/below

The case we analyze is devoted to triply
diffusive-convective mixtures saturating a porous layer
uniformly rotating around the vertical axis, heated from
below and

1) salted from above by two salts;
2) salted from above by one salt and from below by

another salt.

Further, since the porous medium is assumed to have
large pores, we assume the validity of Brinkman law.
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Mathematical Model:

∇P =−µ1

K
v + µ2∆v−2ρ0ωk×v−gρf ,

∇ ·v = 0,
∂T
∂ t

+ v ·∇T = KT ∆T ,
∂Ci

∂ t
+ v ·∇Ci = Ki∆Ci , i = 1,2

(1)

where

P = p− ρ0

2
|ω×x|2, ω = ωk = angular velocity.

Boundary conditions
T (x ,y ,0, t) = Tl , T (x ,y ,d, t) = Tu , Tl > Tu

Ci(x ,y ,0, t) = Cil , Ci(x ,y ,d, t) = Ciu, i = 1,2,
v ·k = 0, on z = 0,d

(2)
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Denoting by (ṽ , p̃, T̃ ,C̃i) the conduction solution, and
setting

v = ṽ + u, p = p̃ + π, T = T̃ + θ , Ci = C̃i + γi (i = 1,2), (3)

dimensionless evolution equations are



∇π =−u + Da∆u + τu×k + (Rθ −R1γ1−R2γ2)k,
∇ ·u = 0,
θt + u ·∇θ = Rw + ∆θ ,

Pi

(
∂γi

∂ t
+ u ·∇γi

)
= HiRiw + ∆γi , i = 1,2,

(4)

where Hi =±1, according to the layer is salted from below
or above, and
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Da =
µ2K
µ1d2 (Darcy number)

τ =
2ρ0ωK

µ1
(Taylor-Darcy number)

Pi =
KT

Ki
(Prandtl number), (i = 1,2)

R =

(
αρ0gKdδT

µ1KT

) 1
2

( thermal Rayleigh number)

Ri =

(
βiρ0gKdPiδCi

µ1KT

) 1
2

(solute Rayleigh numbers)(i = 1,2).
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Assumptions:

i) u,θ , γ1, γ2 are periodic in the x and y directions of

period
2π

ax
,

2π

ay
respectively, and

Ω =

[
0,

2π

ax

]
×
[
0,

2π

ay

]
× [0,1], (5)

will denote the periodicity cell;
ii) u,θ , γ1, γ2, belong to W 2,2(Ω) and are such that all

their first derivatives and second spatial derivatives
can be expanded in Fourier series uniformly
convergent in Ω.
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Main boundary value problem
∇π =−u + Da∆u + τu×k + (Rθ −R1γ1−R2γ2)k,
∇ ·u = 0,
w = θ = γ1 = γ2 = 0, on z = 0,1.

(6)

Since the set {sinnπz}n∈N is a complete orthogonal system
for L2(0,1), then

Γ =
∞

∑
n=1

Γn =
∞

∑
n=1

Γ̃n(x ,y , t)sin(nπz), ∀ Γ ∈ {w ,θ ,γ1,γ2}. (7)

By virtue of the periodicity in the x and y directions

Γ̃n(x ,y , t) = Γ∗n(t)ei(ax x+ay y) (8)
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Theorem 1

Let (w ,θ ,γ1,γ2) ∈ [L∗(Ω)]4, then u = (u,v ,w), solution of
∇π =−u + Da∆u + τu×k + (Rθ −R1γ1−R2γ2)k,
∇ ·u = 0,
w = θ = γ1 = γ2 = 0, on z = 0,1 ,

(9)

is given by
u =

∞

∑
n=1

un(x ,y ,z, t), v =
∞

∑
n=1

vn(x ,y ,z, t)

w =
∞

∑
n=1

wn(x ,y ,z, t) =
∞

∑
n=1

w̃n(x ,y , t)sin(nπz),
(10)

where
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Theorem 1

un =
1

a2

∂ 2wn

∂x∂z
+

τ

a2(1 + Daξn)

∂ 2wn

∂y∂z

vn =
1

a2

∂ 2wn

∂y∂z
− τ

a2(1 + Daξn)

∂ 2wn

∂x∂z

wn = ηn (Rθn−R1γ1n−R2γ2n)

(11)

a2 = a2
x + a2

y

ξn = a2 + n2
π

2

ηn =
a2(1 + Daξn)

ξn(1 + Daξn)2 + n2π2τ2 .
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Remark

In view of Theorem 2, it follows that the independent fields
of (4) are reduced to the three fields θ ,γ1,γ2.



Introduction Mathematical Model Main boundary value problem Salted from above Salted from above/below

Setting

a1n = R2ηn−ξn, a2n =−RR1ηn, a3n =−RR2ηn

b1n =
H1RR1ηn

P1
,b2n =

−(H1R2
1ηn + ξn)

P1
,b3n =

−H1R1R2ηn

P1

c1n =
H2RR2ηn

P2
,c2n =

−H2R1R2ηn

P2
,c3n =

−(H2R2
2ηn + ξn)

P2

and

Ln =

 a1n a2n a3n
b1n b2n b3n
c1n c2n c3n

 ,

the evolution system can be written as follows
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∂

∂ t

 θ

γ1
γ2

=
∞

∑
n=1

Ln

 θn
γ1n
γ2n

−
 u ·∇θ

u ·∇γ1
u ·∇γ2

 , (12)

to which we add the initial-boundary conditions
θ0 =

∞

∑
n=1

(θn)t=0 =
∞

∑
n=1

θ0n,

γi0 =
∞

∑
n=1

(γin)(t=0) =
∞

∑
n=1

γi0n, i = 1,2,

θ = γi = 0, on z = 0,1,

(13)

where u = (u,v ,w) is the divergence free vector
determined by solving

(Da∆−1)2∆w+τ2wzz +(Da∆−1)∆1(Rθ−R1γ1−R2γ2)=0

w = θ = γ1 = γ2 = 0, on z = 0,1.
(14)
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Uniqueness Theorem

The i.b.v. problem (12)-(13) admits a unique solution
(θ ,γ1,γ2) ∈ [L∗(Ω)]3.
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On accounting for the “Auxiliary System Method"
introduced by Rionero S.:

Rionero, S.: J. Eng. Sc. 48 (2010), 1519-1533.
Rionero, S.: Acta Mech. 222 (2011), 261-272.
Rionero, S.: Int. J. Nonlinear Mech. 47 (2012), 61-67.
Rionero, S.: Phys. Fluids 24 (2012), 104101.
Rionero, S.: Phys. Fluids 25 (2013), 054104.
Rionero, S.: Ricerche di Matematica 62 (2013),
183-208.
Rionero, S.: Rend. Lincei Mat. Appl. 25 (2014), 1-44.
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To (12), we associate, ∀n ∈ N, the following “auxiliary
system“, i.e. auxiliary evolution system of the n-th Fourier
component of the perturbation fields:

∂

∂ t

 θn
γ1n
γ2n

= Ln

 θn
γ1n
γ2n

−
 u ·∇θn

u ·∇γ1n
u ·∇γ2n

 , (15)

under the initial-boundary conditions{
(θn)t=0 = θ0n, (γin)t=0 = γ0in, i = 1,2,
θn = γin = 0, (i = 1,2), on z = 0,1.

(16)
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Theorem 2
Let (θn,γ1n,γ2n) be, ∀n ∈ N, solution of (15)-(16). Then the

series
∞

∑
n=1

θn,
∞

∑
n=1

γ1n and
∞

∑
n=1

γ2n are convergent and it

follows that
∞

∑
n=1

θn = θ ,
∞

∑
n=1

γin = γi , i = 1,2, (17)

with (θ ,γ1,γ2) solution of (12)-(13).

Remark
The global nonlinear stability of the conduction solution is
guaranteed if exist conditions - independent of n -
guaranteeing the global nonlinear stability of the null
solution of the “Auxiliary System".
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Layer salted from above by two salts

In this case H1 = H2 =−1 and the linear operator Ln in (12),
is given by

Ln =


R2ηn−ξn −RR1ηn −RR2ηn

−RR1ηn

P1

R2
1ηn−ξn

P1

R1R2ηn

P1

−RR2ηn

P2

R1R2ηn

P2

R2
2ηn−ξn

P2

 .
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Setting


Xn = θn, Yn =

√
P1γ1n, Zn =

√
P2γ2n,

X =
∞

∑
n=1

Xn, Y =
∞

∑
n=1

Yn, Z =
∞

∑
n=1

Zn,

system (12) becomes

∂

∂ t

 Xn
Yn
Zn

= An

 Xn
Yn
Zn

−
 u ·Xn

u ·Yn
u ·Zn

 , (18)
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with the linear operator An given by the symmetric matrix

An =



R2ηn−ξn − RR1√
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On setting An =

 α11n α12n α13n
α12n α22n α23n
α13n α23n α33n

, and denoting by



I1n = α11n + α22n + α33n,

I2n=

∣∣∣∣∣ α11n α12n

α12n α22n

∣∣∣∣∣+
∣∣∣∣∣ α11n α13n

α13n α33n

∣∣∣∣∣+
∣∣∣∣∣ α22n α23n

α23n α33n

∣∣∣∣∣ ,
I3n =

∣∣∣∣∣∣∣
α11n α12n α13n

α12n α22n α23n

α13n α23n α33n

∣∣∣∣∣∣∣ ,
(19)

the Routh-Hurwitz conditions, necessary and sufficient to
guarantee the stability of the null solution of (18), ∀n ∈ N,
are

I1n < 0, I3n < 0, I1nI2n−I3n < 0, ∀n ∈ N, (20)

which imply I2n > 0, ∀n ∈ N.
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Setting

A∗ = inf
(a2,n)∈R+×N

ξn

ηn
, (21)

the following theorem holds.

Theorem 3

The conduction solution is globally, nonlinearly,
asymptotically L2(Ω)−stable if and only if

R2 + R2
1 + R2

2 < A∗. (22)

E =
∞

∑
n=1

En =
1
2

∞

∑
n=1

∫
Ω

(X2
n + Y 2

n + Z2
n )dΩ.
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Stabilizing effects of rotation and Brinkman
terms

R2 + R2
1 + R2

2 < A∗ (23)

Setting

A (n2,a2,Da,τ) =
ξ 2

n (1 + Daξn)

a2 +
n2π2T 2ξn

a2(1 + Daξn)
, (24)

it immediately follows that

A (n2,a2,Da,τ) >
ξ 2

n (1 + Daξn)

a2 =
ξ 2

n

a2 +
Daξ 3

n

a2 >
ξ 2

n

a2 . (25)

Hence
A∗ > minA (n2,a2,0,0) = 4π

2. (26)
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We remark that:

A is an increasing function of n2, then

A∗ = minA (1,a2,Da,τ) = minA1;

A1 is an increasing function of τ;
in view of

∂A1

∂Da
=

(a2 + π2)2

a2

(
a2 + π

2− π2τ2[
1 + Da(a2 + π2)

]2
)
,

it follows that, if

Da > D∗a =
τ−1

π2 ,

then A1 is an increasing function of Da.
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Theorem 4
In the absence of Brinkman law, the global stability of the
conduction solution is guaranteed if and only if

R2 + R2
1 + R2

2 < A∗τ = π
2(1 +

√
1 + τ2)2. (27)

τ Da A∗τ R2
c = R2 + R2

1 + R2
2 < A∗τ

0 0 4π2 R2
c < 4π2

0.1 0 39.6756 R2
c < 39.6756

0.2 0 40.2641 R2
c < 40.2641

0.5 0 44.2757 R2
c < 44.2757

1.2 0 64.7851 R2
c < 64.7851

1.5 0 77.5312 R2
c < 77.5312

Table: Stability condition (27).
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Theorem 5
In the absence of rotation, the global stability of the
conduction solution is guaranteed if and only if

R2 + R2
1 + R2

2 < A∗Da
=

(X ∗)2(1 + DaX ∗)
X ∗−π2 , (28)

with

X ∗ =
3Daπ2−1 +

√
(3Daπ2−1)2 + 16π2Da

4Da
. (29)

τ Da A∗Da
R2

c = R2 + R2
1 + R2

2 < A∗Da

0 0 4π2 R2
c < 4π2

0 0.1 108.573 R2
c < 108.573

0 0.5 372.722 R2
c < 372.722

0 1.5 1030.52 R2
c < 1030.52
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Theorem 6
Let τ ≤ 1. Then

R2 + R2
1 + R2

2 <
A∗τ + A∗Da

2
, (30)

is sufficient for guaranteeing the global stability of the
conduction solution in the presence of rotation and
Brinkman law.

τ Da
A∗τ + A∗Da

2
R2

c = R2 + R2
1 + R2

2 <
A∗τ + A∗Da

2
0 0 4π2 R2

c < 4π2 = 39.4384
0.1 0.1 74.1243 R2

c < 74.1243
0.2 0.5 206.493 R2

c < 206.493
0.3 1 371.462 R2

c < 371.462
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Theorem 7
Let

1 < τ < 1 + Daπ
2. (31)

On setting D∗a =
τ−1

π2 and A∗D∗a =
(Y ∗)2 [1 + D∗aY ∗]

Y ∗−π2 , then

either
R2 + R2

1 + R2
2 < max

{
A∗τ ; A∗D∗a

}
(32)

or

R2 + R2
1 + R2

2 <
A∗τ + A∗D∗a

2
, (33)

with Y ∗ given by (29) where Da = D∗a, guarantees the
global stability of the conduction solution.
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τ Da D∗a
A∗τ + A∗D∗a

2
R2

c <
A∗τ + A∗D∗a

2
1.1 0.02 0.0101321 54.0569 R2

c < 54.0569
1.2 0.1 0.0202642 59.5725 R2

c < 59.5725
1.5 0.5 0.0506606 76.4521 R2

c < 76.4521
2 3 0.101321 106.406 R2

c < 106.406
2.1 3.5 0.111453 112.695 R2

c < 112.695
2.5 4 0.151982 138.863 R2

c < 138.863
3 5 0.202642 173.841 R2

c < 173.841
3.1 10 0.212774 181.138 R2

c < 181.138

Table: Stability condition (33)
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Layer salted from above and below.

Suppose now that the layer is uniformly heated from
below and salted from below by the salt 1 and from
above by the salt 2:H1 = 1, H2 =−1. The evolution
equations of perturbations fields are is given by (12) with

Ln =


R2ηn−ξn −RR1ηn −RR2ηn

RR1ηn

P1
−

R2
1ηn + ξn

P1
−R1R2ηn

P1

−RR2ηn

P2

R1R2ηn

P2

R2
2ηn−ξn

P2

 .
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Let us introduce two new fields:

Φ1n = R1θn−P1Rγ1n, Φ2n = R2θn + P2Rγ2n.

On setting

θ
∗
n = θn, Φ∗in =

1
µin

Φin, (i = 1,2),

with

µ1n =

√
|1−P1|

ξn

ηn
, µ2n =

√
|P2−1| ξn

ηn
,

the “Auxliary System", omitting the stars, becomes

∂

∂ t

 θn
Φ1n
Φ2n

= L̃n

 θn
Φ1n
Φ2n

−
 u ·∇θn

u ·∇Φ1n
u ·∇Φ2n

 . (34)
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where L̃n is given by

L̃n=


R∗ηn−ξn

R1

P1

√
|1−P1|ξnηn −

R2

P2

√
|P2−1|ξnηn

R1(1−P1)
√

ξnηn

P1
√
|1−P1|

−ξn

P1
0

−R2(P2−1)
√

ξnηn

P2
√
|P2−1|

0 −ξn

P2


.

and

R∗ = R2−
R2

1
P1

+
R2

2
P2

. (35)
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Setting

A∗ = inf
(a2,n)∈R+×N

ξn

ηn
(36)

and on choosing

E =
∞

∑
n=1

En, (37)

with
En =

∫
Ω

(θ
2
n + Φ2

1n + Φ2
2n)dΩ, (38)

the following theorem holds true.



Introduction Mathematical Model Main boundary value problem Salted from above Salted from above/below

Setting

A∗ = inf
(a2,n)∈R+×N

ξn

ηn
(36)

and on choosing

E =
∞

∑
n=1

En, (37)

with
En =

∫
Ω

(θ
2
n + Φ2

1n + Φ2
2n)dΩ, (38)

the following theorem holds true.



Introduction Mathematical Model Main boundary value problem Salted from above Salted from above/below

Setting

A∗ = inf
(a2,n)∈R+×N

ξn

ηn
(36)

and on choosing

E =
∞

∑
n=1

En, (37)

with
En =

∫
Ω

(θ
2
n + Φ2

1n + Φ2
2n)dΩ, (38)

the following theorem holds true.



Introduction Mathematical Model Main boundary value problem Salted from above Salted from above/below

Theorem 8
The global nonlinear stability of the conduction solution is
guaranteed by

R2 < R2
1 −R2

2 + A∗, for P1 ≤ 1, P2 ≥ 1, (39)

R2 <
R2

1
P1
−

R2
2

P2
+ A∗, for P1 ≥ 1, P2 ≤ 1, (40)

R2 < R2
1 −

R2
2

P2
+ A∗, for P1 ≤ 1, P2 ≤ 1, (41)

R2 <
R2

1
P1
−R2

2 + A∗, for P1 ≥ 1, P2 ≥ 1, (42)

(39) being also necessary.
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