
Surfaces in space
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Last time

On a surface S ⊂ R3 there is notion of intrinsic distance

d(p,q) = inf{length (γ)|γ : [0,1]→ S curve with γ(0) = p, γ(1) = q}

Definition
An isometry between surfaces S1, S2 is a diffeomorphism φ : S1 → S2 that
preserves distance, i.e., dS1 (p,q) = dS2 (φ(p), φ(q)) for all p,q ∈ S1.

If φ is a rigid motion, i.e., a composition of translations, rotations, and
reflections in R3 then φ is an isometry between S and φ(S).

There are many isometries that do not come from rigid motions.



Gaussian Curvature
If a diffeomorphism φ : S1 → S2 is such that

dφp(v).dφp(w) = v .w for all v ,w ∈ TpS1, p ∈ S1

then φ is an isometry.

This is because if γ is a curve in S1 then the condition above implies that
length (φ(γ)) = length (γ). (Check!)

The converse is also true.

Gauss’s Theorema Egregium
The Gaussian curvature is invariant under smooth isometries: If φ is an
isometry between S1 and S2 then K S2 ◦ φ = K S1 .

There is a C1-isometry from a flat torus into R3



Gaussian curvature

“The Gaussian curvature is invariant under isometries.”

Proof.
Given a chart (U,x) set gij = ∂x
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, i , j = 1,2.

K ◦ x can be computed via a polynomial expression that depends only on
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For example, if g11 = g22 = λ2 and g12 = 0, then K = −λ−2∆ lnλ.

If φ is an isometry between S1 and S2, then (U,y = φ ◦ x) is a chart for S2 and
we have
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Thus K S2 ◦ y = K S1 ◦ x =⇒ K S2 ◦ φ = K S1 .



Gaussian curvature
Rigidity of sphere
Compact surfaces with constant Gaussian curvature K̄ are rigid, i.e., up to a
rigid motion they are spheres with radius 1/

√
K̄ .

Cohn-Vossen Theorem says that any two isometric compact surfaces with
positive Gaussian curvature are rigid, i.e., differ only by a rigid motion.

There are compact isometric surfaces that do not differ by rigid motion

It is an open problem to determine if compact surfaces are locally rigid.

The hypothesis that the surface is compact in the theorem is crucial as there
are annuli with K = 1.



Gaussian curvature
Compact surfaces with constant Gaussian curvature K̄ are rigid.
1: K̄ must be positive because there is a point with positive Gaussian
curvature. We must have k1 ≤

√
k̄ ≤ k2.

2: Choose p maximum point of k2. It is also minimum point of k1 = K̄/k2.

If we show that S is umbilic at p then the global maximum of k2 is also its
global minimum

√
k̄ and thus S is totally umbilical.

3: W.l.o.g. p = 0, S = {(x1, x2,h(x1, x2)) : (x1, x2) ∈ U}, h(0) = 0, ∇h(0) = 0.

With x(x1, x2) = (x1, x2,h(x1, x2)) set
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We have k1 ≤ A11 and k2 ≥ A22 near the origin and equality at the origin.

Thus ∂2
x1x1

A22(0) ≤ 0 ≤ ∂2
x2x2

A11(0).

A long computation shows ∂2
x2x2

A11(0) = ∂2
x1x1

A22(0)− K (0)(k2(0)− k1(0)).

Thus k2(0) = k1(0) as we wanted to show.



Gauss Bonnet Theorem
Let S be a compact surface.

(Hopf-Rinow Thm.) For every two points in S there is curve γ in S that
minimizes the intrinsic distance between the two points. The curve γ is called
a length minimizing geodesic.

A geodesic triangle T on S is a triangle whose edges are length minimizing
geodesics.

After orienting the triangle T we have interior angles 0 ≤ αi ≤ 2π and exterior
angles −π ≤ θi ≤ π, i = 1,2,3.

Local Gauss-Bonnet Theorem
Let T ⊂ S be a geodesic triangle contained in the image of some chart. Then∫

T
KdA +

3∑
i=1

θi = 2π.

Thus, because αi + βi = π we have
∑3

i=1 αi =
∫

T KdA + π.



Gauss-Bonnet Theorem
“T geodesic triangle =⇒

∑3
i=1 αi =

∫
T KdA + π.”

• K = 0 =⇒ sum of interior angles is π
• K > 0 =⇒ sum of interior angles is > π
• K < 0 =⇒ sum of interior angles is < π

Every compact orientable surface is homeomorphic to a sphere with
g-handles (genus)

Gauss-Bonnet Theorem
Let S be a compact surface with genus g. Then∫

S
KdA = 4π(1− g)



Application
Theorem: A surface S with K ≥ 0 and identical to a plane P outside a
compact set, is identical to P everywhere

Proof.
1: Choose R > 0 so that S \ BR(0) = P \ BR(0);

2: Choose T a triangle in P that contains BR(0) ∩ P in its interior;

3: Local G.-B. Thm =⇒
∫

T KdA = 0 and so K = 0 everywhere;

4: Let {Σt}0<t<≤1 be a continuous family of ellipsoids such that
1 all have positive Gaussian curvature;
2 BR(0) ∩ P is contained inside Σt ∩ P for all t ;
3 BR(0) is contained inside Σ1 and for all t very small , Σt is contained

inside the slab {(x , y , z) : |z| < t}.

5: Initially S ∩P ⊂ Σ1. Decrease t from 1 to 0 until Σt touches for the first time
S at some point p and instant t̄ .

6: S is inside Σt near p and so K S(p) ≥ K Σt̄ (p) > 0. Contradiction



Gauss-Bonnet Theorem

A triangulation {Ti}N
i=1 of S is a collection of triangles so that ∪N

i=1Ti = S and
triangles intersect only along edges or vertices.

The Euler characteristic χ is Vertices − Edges + Faces and does not depend
on the triangulation.

For a compact surface with genus g, χ = 2(1− g).

Every surface admits a triangulation made by geodesic triangles contained in
image of charts.



Gauss-Bonnet Theorem
S be a compact surface with genus g =⇒

∫
S KdA = 4π(1− g).

Proof.
Let {Ti}N

i=1 be a geodesic triangulation. Then∑N
i=1

∫
Ti

KdA +
∑N

i=1
∑3

j=1 θij = 2πF

Using θij = π − αij we have∫
S KdA + 3πF −

∑N
i=1

∑3
j=1 αij = 2πF

Every edge is shared by two triangles and so 3F = 2E∫
S KdA + 2πE −

∑N
i=1

∑3
j=1 αij = 2πF .

The sum of all interior angles around a vertice is 2π and so the sum of all
interior angles in 2πV .Thus∫

S KdA + 2πE − 2πV = 2πF =⇒
∫

S KdA = 2π(V − E + F ) = 4π(1− g)


