Surfaces in space

André Neves

Last time

Given an orientable surface S we have the Gauss map

$$
N: S \rightarrow S^{2} \subset \mathbb{R}^{3}, \quad N(p)=\text { unit normal vector to } T_{p} S
$$

Its differential satisfies $d N_{p}: T_{p} S \rightarrow T_{p} S$. and one can check that $d N_{p}$ is self-adjoint.

Alternatively, we can also consider the $2^{\text {nd }}$ fundamental form

$$
A: T_{p} S \times T_{p} S \rightarrow \mathbb{R}, \quad A(v, w)=-d N_{p}(v) . w .
$$

In the (not) particular case where

$$
S=\left\{\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right):\left(x_{1}, x_{2}\right) \in U\right\} \quad f(0)=0, \nabla f(0)=0
$$

we have $A_{0}=\operatorname{Hess} f$.

Principal curvatures

The map $d N_{p}$ is self-adjoint and thus diagonalizable, i.e., there is $\left\{e_{1}, e_{2}\right\}$ an orthonormal basis for $T_{p} S$ so that

$$
d N_{p}\left(e_{i}\right)+k_{i}(p) e_{i}=0, \quad i=1,2, \quad \text { where } k_{1}(p) \leq k_{2}(p) .
$$

The functions k_{1}, k_{2} are continuous and called principal curvatures. The directions e_{1}, e_{2} are called principal directions.
On $P=\{z=0\}, N_{p}=(0,0,1)$ all $p \Longrightarrow d N_{p}=0 \Longrightarrow k_{1}=k_{2}=0$
On $S(r)=\left\{p \in \mathbb{R}^{3}:|p|=r\right\}, d N_{p}=-r^{-1} \mathrm{ld} \Longrightarrow k_{1}=k_{2}=1 / r$

On $S=\left\{z=x^{2}-y^{2}\right\}$ the principal curvatures at the origin are -2 and 2.

Principal curvatures

Locally, a surface whose principal curvatures are $k_{1}=-1 / R_{1}$ and $k_{2}=1 / R_{2}$ at a point p looks like the one given below.

Umbilic points

We say a point $p \in S$ is umbilic if $k_{1}(p)=k_{2}(p)$ and the surface is totally umbilical if every point is umbilic.

Theorem

A connected totally umbilical surface is contained in a plane or sphere.
If the principal curvatures are constant functions, one can show that S is contained in a plane, sphere, or cylinder.
If a compact surface has no umbilic points, then the principal directions give a non-vanishing vector field on the surface. Poincare-Hopf index Theorem says that the surface must have genus one.
It is an old problem (Caratheodory Conjecture) to show that every sphere has at least two umbilic points.

Umbilic points

"Totally umbilic surfaces are contained in planes or spheres"

Proof.

We have for all p that $d N_{p}=\lambda(p)$ Id. Let (U, \mathbf{x}) be a chart.
1:The continuous function $\bar{\lambda}=\lambda \circ \mathbf{x}$ is constant $(\Longrightarrow \lambda=$ const.)
$d N\left(\frac{\partial \mathbf{x}}{\partial x_{1}}\right)=\bar{\lambda} \frac{\partial \mathbf{x}}{\partial x_{1}} \Longrightarrow \frac{\partial(N \circ \mathbf{x})}{\partial x_{1}}=\bar{\lambda} \frac{\partial \mathbf{x}}{\partial x_{1}} \Longrightarrow \frac{\partial^{2}(N \circ \mathbf{x})}{\partial x_{2} \partial x_{1}}=\frac{\partial \bar{\lambda}}{\partial x_{2}} \frac{\partial \mathbf{x}}{\partial x_{1}}+\bar{\lambda} \frac{\partial \mathbf{x}}{\partial x_{2} \partial x_{1}}$.
Switching x_{1} with $x_{2}, \frac{\partial^{2}(N \circ \mathbf{x})}{\partial x_{1} \partial x_{2}}=\frac{\partial \bar{\lambda}}{\partial x_{1}} \frac{\partial \mathbf{x}}{\partial x_{2}}+\bar{\lambda} \frac{\partial \mathbf{x}}{\partial x_{1} \partial x_{2}}$.
Thus $\frac{\partial \bar{\lambda}}{\partial x_{1}} \frac{\partial \mathbf{x}}{\partial x_{2}}=\frac{\partial \bar{\lambda}}{\partial x_{2}} \frac{\partial \mathbf{x}}{\partial x_{1}} \Longrightarrow \frac{\partial \bar{\lambda}}{\partial x_{1}}=\frac{\bar{\lambda}}{\partial x_{2}}=0$.
2: If $\lambda=0 \Longrightarrow d N_{p}=0$ all $p \Longrightarrow N(p)=$ const. $\Longrightarrow S \subset$ some plane.
3: If $\lambda>0 \Longrightarrow \frac{\partial \mathbf{x}}{\partial x_{i}}-\frac{1}{\lambda} \frac{\partial(N \times \mathbf{x})}{\partial x_{i}}=0 \Longrightarrow \frac{\partial}{\partial x_{i}}\left(\mathbf{x}-\frac{1}{\lambda} N \circ \mathbf{x}\right)=0, i=1,2$
Thus $\exists c \in \mathbb{R}^{3}$ such that $\mathbf{x}-\frac{1}{\lambda} N \circ \mathbf{x}=c \Longrightarrow|\mathbf{x}-c|=\frac{|N \circ \mathbf{x}|}{\lambda}=\lambda^{-1}$.

Gaussian curvature and mean curvature

Definition

The Gaussian curvature of a surface S at p is $K(p)=\operatorname{det} d N_{p}=k_{1}(p) k_{2}(p)$.
The mean curvature of an orientable surface S at p is $H(p)=k_{1}(p)+k_{2}(p)$.
For $S(r)=\left\{p \in \mathbb{R}^{3}:|p|=r\right\}$ we have $K=r^{-2}$ and $H=2 r^{-1}$.
Claim:The functions $K: S \rightarrow \mathbb{R}$ and $H: S \rightarrow \mathbb{R}$ are smooth. If S is given by the graph of a function $h: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, then

$$
K=\frac{\partial_{x x}^{2} h \partial_{y y}^{2} h-\left(\partial_{x y}^{2} h\right)^{2}}{\left(1+|\nabla h|^{2}\right)^{2}}=\frac{\operatorname{det} \text { Hess } h}{\left(1+|\nabla h|^{2}\right)^{2}}
$$

and

$$
H=\frac{\left(1+\left(\partial_{x} h\right)^{2}\right) \partial_{y y}^{2} h-2 \partial_{x} h \partial_{y} h \partial_{x y}^{2} h+\left(1+\left(\partial_{x} h\right)^{2}\right) \partial_{y y}^{2} h}{\left(1+|\nabla h|^{2}\right)^{2}} .
$$

Thus K and H are smooth.

Gaussian curvature

Suppose $S=\{(x, y, h(x, y)):(x, y) \in U\}$, where $h(0)=0, \nabla h(0)=0$.
Then $K(0)=\operatorname{det} \operatorname{Hessh}(0)$.
If $K(0)>0, h$ has a local min or a local max at 0 by the $2^{\text {nd }}$ derivative test.
If $K(0)<0, h$ has a saddle point at 0 by the $2^{\text {nd }}$ derivative test.
In general, if $K(p)>0$ then the surface near p is all to one side of $T_{p} S$ while if $K(p)<0$ then the surface near p is on both sides of $T_{p} S$.

Gaussian curvature

Proposition

If S is a compact surface, then there is a point p with $K(p)>0$.

Proof.

There is $R>0$ so that $S \subset B_{R}(0)$. Decrease R until we find r so that $S \subseteq B_{r}(0)$ and $S \cap \partial B_{r}(0) \neq \emptyset$.
At the point $p \in S \cap \partial B_{r}(0)$ we must have $K^{S}(p) \geq K^{\partial B_{r}(0)}(p)=r^{-2}$.
On a surface $S \subset \mathbb{R}^{3}$ there is notion of intrinsic distance

$$
d(p, q)=\inf \{\text { length }(\gamma) \mid \gamma:[0,1] \rightarrow S \text { curve with } \gamma(0)=p, \gamma(1)=q\}
$$

On the unit sphere $d((0,0,1),(0,0,-1))=\pi$.

Definition

An isometry between surfaces S_{1}, S_{2} is a diffeomorphism $\phi: S_{1} \rightarrow S_{2}$ that preserves distance, i.e., $d_{S_{1}}(p, q)=d_{S_{2}}(\phi(p), \phi(q))$ for all $p, q \in S_{1}$.

