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Last time
Given an orientable surface S we have the Gauss map

N : S → S2 ⊂ R3, N(p) = unit normal vector to TpS.

Its differential satisfies dNp : TpS → TpS. and one can check that dNp is
self-adjoint.

Alternatively, we can also consider the 2nd fundamental form

A : TpS × TpS → R, A(v ,w) = −dNp(v).w .

In the (not) particular case where

S = {(x1, x2, f (x1, x2)) : (x1, x2) ∈ U} f (0) = 0, ∇f (0) = 0

we have A0 = Hess f .



Principal curvatures
The map dNp is self-adjoint and thus diagonalizable, i.e., there is {e1,e2} an
orthonormal basis for TpS so that

dNp(ei ) + ki (p)ei = 0, i = 1,2, where k1(p) ≤ k2(p).

The functions k1, k2 are continuous and called principal curvatures. The
directions e1,e2 are called principal directions.

On P = {z = 0}, Np = (0,0,1) all p =⇒ dNp = 0 =⇒ k1 = k2 = 0

On S(r) = {p ∈ R3 : |p| = r}, dNp = −r−1Id =⇒ k1 = k2 = 1/r

On S = {z = x2 − y2} the principal curvatures at the origin are −2 and 2.



Principal curvatures

Locally, a surface whose principal curvatures are k1 = −1/R1 and k2 = 1/R2
at a point p looks like the one given below.



Umbilic points

We say a point p ∈ S is umbilic if k1(p) = k2(p) and the surface is totally
umbilical if every point is umbilic.

Theorem
A connected totally umbilical surface is contained in a plane or sphere.

If the principal curvatures are constant functions, one can show that S is
contained in a plane, sphere, or cylinder.

If a compact surface has no umbilic points, then the principal directions give a
non-vanishing vector field on the surface. Poincare-Hopf index Theorem says
that the surface must have genus one.

It is an old problem (Caratheodory Conjecture) to show that every sphere has
at least two umbilic points.



Umbilic points

“Totally umbilic surfaces are contained in planes or spheres”

Proof.
We have for all p that dNp = λ(p)Id. Let (U,x) be a chart.

1:The continuous function λ̄ = λ ◦ x is constant ( =⇒ λ = const .)
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2: If λ = 0 =⇒ dNp = 0 all p =⇒ N(p) = const . =⇒ S ⊂ some plane.
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∂xi
− 1

λ
∂(N◦x)
∂xi

= 0 =⇒ ∂
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Thus ∃c ∈ R3 such that x− 1
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λ = λ−1.



Gaussian curvature and mean curvature

Definition
The Gaussian curvature of a surface S at p is K (p) = det dNp = k1(p)k2(p).

The mean curvature of an orientable surface S at p is H(p) = k1(p) + k2(p).

For S(r) = {p ∈ R3 : |p| = r} we have K = r−2 and H = 2r−1.

Claim:The functions K : S → R and H : S → R are smooth.

If S is given by the graph of a function h : U ⊂ R2 → R, then

K =
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xy h)2
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and
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Thus K and H are smooth.



Gaussian curvature

Suppose S = {(x , y ,h(x , y)) : (x , y) ∈ U}, where h(0) = 0,∇h(0) = 0.

Then K (0) = det Hessh(0).

If K (0) > 0, h has a local min or a local max at 0 by the 2nd derivative test.

If K (0) < 0, h has a saddle point at 0 by the 2nd derivative test.

In general, if K (p) > 0 then the surface near p is all to one side of TpS while if
K (p) < 0 then the surface near p is on both sides of TpS.



Gaussian curvature

Proposition
If S is a compact surface, then there is a point p with K (p) > 0.

Proof.
There is R > 0 so that S ⊂ BR(0). Decrease R until we find r so that
S ⊆ Br (0) and S ∩ ∂Br (0) 6= ∅.

At the point p ∈ S ∩ ∂Br (0) we must have K S(p) ≥ K ∂Br (0)(p) = r−2.

On a surface S ⊂ R3 there is notion of intrinsic distance

d(p,q) = inf{length (γ)|γ : [0,1]→ S curve with γ(0) = p, γ(1) = q}

On the unit sphere d((0,0,1), (0,0,−1)) = π.

Definition
An isometry between surfaces S1, S2 is a diffeomorphism φ : S1 → S2 that
preserves distance, i.e., dS1 (p,q) = dS2 (φ(p), φ(q)) for all p,q ∈ S1.


