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Overview

Given a surface in space we want to (i) associate a quantity to that surface so
that (ii) information about that quantity tells something non-trivial about the
surface.

The most obvious one, the area, is not good enough because we can always
just by scaling making its area small or big...

We will study two quantities, Gaussian curvature and mean curvature, that
have been introduced around 200 years ago and have proven to be very
efficient in answering these type of questions.



What is a surface?
“ A surface is a subset of R3 such that each of its points has a tiny
neighborhood that looks like a curved disc.”



What is a surface?
Definition
A set S ⊂ R3 is a surface if for every p ∈ S there are open sets V ⊂ R3 and
U ⊂ R2 and map

x : U ⊂ R2 −→ V ∩ S ⊂ R3

such that
i) The map x is smooth;
ii) x(U) = V ∩ S and x is a homeomorphism;
iii) For all q ∈ U, the linear map dxq : R2 → R3 is injective.

The pair (x,U) is called a chart.

Condition (iii) ensures that a cone is not a surface.



Differentiability

Examples
• A plane P ⊂ R3 or any open set of P are surfaces;
• If f : U ⊂ R2 → R is smooth then its graph is a surface

graph(f ) = {(u, v , f (u, v)) : (u, v) ∈ U};

• If f : R3 → R a smooth function such that t ∈ R is a regular value, i.e.,
∇f (p) 6= 0 for all p ∈ f−1(t), then S = f−1(t) is a surface (called level
surface).

Definition
Let S be a surface and Ω be an open set of some Rk .

• A function f : Ω ⊂ Rk → S ⊂ R3 is differentiable if its 3 components are
differentiable;

• A function f : S → Ω ⊂ Rk is differentiable if f ◦ x : U → Ω is differentiable
for every chart (x,U).



Change of parameters
Given two charts (x,U), (y,V ) of the surface S such that
x(U) ∩ y(V ) = W 6= ∅, then

h = y−1 ◦ x : x−1(W )→ y−1(W )

is a diffeomorphism (i..e, smooth with inverse also smooth)



Tangent plane

Definition
The tangent plane TpS to a surface S at the point p ∈ S is the set of all
vectors w ∈ R3 for which there is a differentiable curve α : (−ε, ε)→ S with
α(0) = p and α′(0) = w.

Given a chart (U,x) where x(q) = p, then TpS = dxq(R2).



Tangent plane
Given a surface S and p ∈ S there is a neighborhood V ⊂ R3 of p so that
V ∩ S is the graph of a function defined over TpS.

Assuming w.l.o.g. that TpS = {z = 0}, this means there is U ⊂ R2 containing
0 and h : U → R so that

S ∩ V = {(x , y ,h(x , y)) : (x , y) ∈ U}.

Necessarily h(0) = 0 and ∇h(0) = 0.

Given a differentiable map φ : S1 → S2 between two surfaces we define

dφp : TpS1 → Tφ(p)S2, dφp(α′(0)) = (φ ◦ α)′(0)



Normal vector
Given a chart (U,x), a normal vector to the surface at p = x(u, v) is given by

N(p) =
∂ux× ∂v x
|∂ux× ∂v x|

If S = f−1(t) for some f : R3 → R, where t is regular value, then

N(p) =
∇f (p)

|∇f (p)|
and TpS = {w ∈ R3 : w .∇f (p) = 0}.



Orientable surfaces
When the surface is S2 = {x2 + y2 + z2 = 1} (unit sphere) then N(p) = p for
all p ∈ S2 and TpS2 = {w ∈ R3 : w .p = 0}

A surface S is orientable if there is a continuous map N : S → S2 ⊂ R3 such
that N(p) is a normal vector field.



Orientable surfaces

Surfaces with a well defined “inside” and “outside” are orientable. Brower
separation Theorem says that any compact surface in R3 has an “inside” and
“outside”.

Level surfaces S = f−1(t) are orientable because there’s an “inside” {f < t}
and “outside” {f > t}. The converse is also true.



Gauss map

Given an orientable surface S it is a good idea to study its Gauss map

N : S → S2 ⊂ R3, N(p) = unit normal vector to TpS.

For instance, if N(S) is contained in the upper hemisphere of S2, then it is
“easy” to see that S is graphical over the xy -plane.

Note that TN(p)S2 = {w ∈ R3 : w .N(p) = 0} = TpS. Thus

dNp : TpS → TpS.

It is “easy” to see that dNp is self-adjoint, i.e., dNp(v).w = dNp(w).v for all
v ,w ∈ TpS.



Second fundamental form
The 2nd fundamental form at p ∈ S is the bilinear symmetric map

A : TpS × TpS → R, A(v ,w) = −dNp(v).w .

The − sign is so that if S = S2 and N the interior unit normal, then
A(v ,w) = v .w .

Assuming 0 ∈ S and T0S = {z = 0}, there is a f : U → R so that near the
origin, S is given by

graph(f ) = {(x1, x2, f (x1, x2)) : (x1, x2) ∈ U} f (0) = 0, ∇f (0) = 0.

In this case with ∂x1 = (1,0, ∂x1 f ) and ∂x2 = (0,1, ∂x2 f ) we have

T(x1,x2,f (x1,x2))S = span{∂x1 , ∂x2} and N(x1, x2) =
(−∂x1 f ,−∂fx2 ,1)√

1+|∇f |2

Using the fact that f and ∇f vanish at the origin we compute

dN0(∂xi ) = ∂xi N(0) = −(∂2
xi x1

f (0), ∂2
xi x2

f (0),0), i = 1,2 and

A(∂xi , ∂xj ) = −dN0(∂xi ).∂xj = ∂2
xi xj

f (0), i , j = 1,2.

In other words, A is like the “Hessian” of the surface


