An introduction to Lie groups, symmetries, and symplectic geometry Problem Set 4

Robert Bryant

July 27, 2018

Exercise 1. Let n be a positive integer. Show that all non-degenerate antisymmetric forms on n-dimensional vector spaces are equivalent over \mathbb{R} ; i.e. if (V_1, β_1) and (V_2, β_2) are two such then there is a linear isomorphism $\varphi : V \to W$ such that

$$\beta_2(\varphi(v),\varphi(w)) = \beta_1(v,w) \qquad v,w \in V_1.$$

Exercise 2. The Lie derivative $\mathcal{L}_x\beta$ is 0 everywhere if and only $\phi_t^*\beta = \beta$ for all $t \in \mathbb{R}$.

Exercise 3. Let $x: U \to \mathbb{R}^n$ be a coordinate chart on a n-dimensional smooth manifold and consider the induced map

$$(x,v): TU \to \mathbb{R}^n \times \mathbb{R}^n$$

 $\left(p, v^i \left(\frac{\partial}{\partial x^i}\right)_p\right) \mapsto \left(x^1(p), \cdots, x^n(p), v^1, \dots, v^n\right).$

Let X be the vector field on U given by $X = a^i(x)\frac{\partial}{\partial x^i}$. In the coordinate chart given by (x, v) the derivative of X is given by

$$X' = a^{i}(x)\frac{\partial}{\partial x^{i}} + v^{i}\frac{\partial a_{j}}{\partial x^{i}}\frac{\partial}{\partial v^{j}}$$

Exercise 4. Let M be a smooth manifold and $L : TM \to \mathbb{R}$ be a smooth function. For the function $E_L : M \to \mathbb{R}$ and 1-form ω_L on TM such that in local coordinates (x, v) we have

$$E_L = v^i \frac{\partial L}{\partial v^i} - L$$
$$\omega_l = \frac{\partial L}{\partial v^i} dx^i.$$

Check that

$$\ddot{\gamma}(t) \sqcup d\omega_L = -(dE_L)_{\dot{\gamma}(t)}$$

expands in local coordinates to the Euler-Lagrange equations for $\gamma : [a, b] \to M$ to be L-critical.