PROBLEMS

1: Let $S_{2}\left(\mathbb{R}^{2}\right)$ be the set of all symmetric 2×2 matrices and consider a smooth $\operatorname{map} A: \mathbb{R}^{2} \rightarrow S_{2}\left(\mathbb{R}^{2}\right)$.

- If $\lambda_{1}(x, y)$ denotes the lowest eigenvalue of $A(x, y)$, show that the $\operatorname{map}(x, y) \mapsto \lambda_{1}(x, y)$ is continuous.
- Give an example of a map A as above where the function $(x, y) \mapsto$ $\lambda_{1}(x, y)$ is NOT differentiable.
- Show that the functions

$$
\operatorname{det}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad(x, y) \mapsto \operatorname{det} A(x, y)
$$

and

$$
\operatorname{tr}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad(x, y) \mapsto \operatorname{trace} A(x, y)
$$

are smooth.
2: Show that on $S(r)=\left\{p \in \mathbb{R}^{3}:|p|=r\right\}$ we have $d N_{p}=-r^{-1} \mathrm{Id}$.
3: Compute the principal curvatures of the cylinder

$$
\left\{(x, y, z): x^{2}+y^{2}=1\right\}
$$

4: Show that if S is a surface such that the Gauss map is constant, then S is contained in a plane

5:Show that if $S=(x, y, h(x, y)):(x, y) \in U$ where $h: U \rightarrow \mathbb{R}$ is a smooth function then

$$
K=\frac{\operatorname{det} \operatorname{Hess} h}{\left(1+|\nabla h|^{2}\right)^{2}}
$$

and

$$
H=\frac{\left(1+\left(\partial_{x} h\right)^{2}\right) \partial_{y y}^{2} h-2 \partial_{x} h \partial_{y} h \partial_{x y}^{2} h+\left(1+\left(\partial_{x} h\right)^{2}\right) \partial_{y y}^{2} h}{\left(1+|\nabla h|^{2}\right)^{2}}
$$

6: Give an example of two surfaces S_{1}, S_{2} containing the origin, both with $K=0$, both with the tangent plane at the origin being the $x y$-plane, and such that near the origin S_{1} lies all to one side of the $x y$-plane while S_{2} lies on both sides of the $x y$-plane.

