PROBLEMS

0: Show that the differential of the Gauss map is self-adjoint, i.e.,

$$dN_p(v).w = dN_p(w).v$$

for all $v, w \in T_p S$ and all $p \in S$. This exercise is important!

1: Show that the cone $\{(x, y, z) : z = \sqrt{x^2 + y^2}\}$ is not a surface

- **2:** Show that
 - If $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ is smooth then its graph is a surface $graph(f) = \{(u, v, f(u, v)) : (u, v) \in U\};$
 - If $f : \mathbb{R}^3 \to \mathbb{R}$ a smooth function such that $t \in \mathbb{R}$ is a regular value, i.e., $\nabla f(p) \neq 0$ for all $p \in f^{-1}(t)$, then $S = f^{-1}(t)$ is a surface (called level surface).

3: Show that if the surface S is contained in $\cup_{i \in \mathbb{N}} \mathbf{x}_i(U_i)$, where each (U_i, \mathbf{x}_i) is a chart then a function $f : S \to \mathbb{R}$ is differentiable iff $f \circ \mathbf{x}_i : U_i \to \mathbb{R}$ is differentiable for all $i \in \mathbb{N}$.

4: S is a surface. Given a chart (U, \mathbf{x}) where $\mathbf{x}(q) = p$, show that $T_p S = d\mathbf{x}_q(\mathbb{R}^2)$.

5: Given a surface S and $p \in S$, show the existence of a neighborhood $V \subset \mathbb{R}^3$ of p so that $V \cap S$ is the graph of a function defined over T_pS , more precisely, there is $U \subset T_pS$ an open set containing the origin and $f: U \to \mathbb{R}$ a differentiable function so that

$$V \cap S = \{q + f(q)n : q \in U\}$$

where n is a unit vector perpendicular to T_pS .

6: Consider the surface $S = f^{-1}(t)$ for some $f : \mathbb{R}^3 \to \mathbb{R}$, where t is regular value. Show that

$$T_p S = \{ w \in \mathbb{R}^3 : w \cdot \nabla f(p) = 0 \}.$$

and conclude that $N(p) = \frac{\nabla f(p)}{|\nabla f(p)|}$.

7: Let S be an orientable surface. Show that the Gauss map is differentiable.