An introduction to Lie groups, symmetries, and symplectic geometry Problem Set 1

Robert Bryant

July 23, 2018

 $M_n(\mathbb{R})$ denotes the space of $n \times n$ matrices with real entries. Denote by $I_n \in M_n(\mathbb{R})$ the identity matrix. The *n* is ommitted from the notation when it is clear from context.

The orthogonal group is

$$O(n) = \left\{ A \in M_n(\mathbb{R}) | {}^t A A = I \right\}.$$

The special linear group is

$$SL(n, \mathbb{R}) = \{A \in M_n(\mathbb{R}) | \det(A) = 1\}.$$

Denote $J_n = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \in M_{2n}(\mathbb{R}).$ The *(real) symplectic group* is

$$\operatorname{Sp}(n,\mathbb{R}) = \left\{ A \in M_{2n}(\mathbb{R}) | {}^{t}AJ_{n}A = J_{n} \right\}.$$

Exercise 1. Find the critical points and critical values of the function

$$\mathbb{R}^2 \to \mathbb{R}^1$$
$$(x, y) \mapsto x^2 - y^2 + (x^2 + y^2)^2.$$

Exercise 2. Show that $SL(n, \mathbb{R})$ and $Sp(n, \mathbb{R})$ are submanifolds of $M_n(\mathbb{R})$ and $M_{2n}(\mathbb{R})$, respectively, and compute their dimensions.

Exercise 3. Compute T_IG for $G = O(n), SL(n, \mathbb{R}), Sp(n, \mathbb{R})$ and show that

$$T_a G = \{av | v \in T_I G\}.$$

Hint: Consider $L_a: G \to G$ where $L_a(g) = ag$.