Problem 1. In the random walk game in the quarter plane of the figure, and with Γ_{1} and Γ_{0} being the open and closed parts of the boundary respectively, find the value of y to maximize the probability of exiting starting the walks from $(1, y)$.

Problem 2 (to be done after the fifth class).
Consider the problem

$$
\left\{\begin{array}{ccc}
u_{t t}-u_{x x}=0 & \text { in } & (0, \pi) \times \mathbb{R} \\
u_{x}(0, t)=u_{x}(\pi, t)=0 & \text { for } & t \in \mathbb{R} \\
u(x, 0)=g(x) & \text { for } & x \in(0, \pi), \\
u_{t}(x, 0)=0 & \text { for } & x \in(0, \pi)
\end{array}\right.
$$

i) Make an even reflection of the problem with respect to $x=0$, and then a periodic extension, to transform the problem into one in all of \mathbb{R}. Then use d'Alembert's formula to find $u(\pi / 2,5 \pi)$ in terms of g.
ii) If

$$
g(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in[0, \pi / 2] \\
1 & \text { if } & x \in(\pi / 2, \pi]
\end{array}\right.
$$

compute explicitely, using Fourier series, the solution of the problem.
iii) Compute $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}$ and $\sum_{k=0}^{\infty} \frac{(-1)^{k} \cos (2 k+1)}{2 k+1}$.

Problem 3 (to be done after the fifth class). Let $Q=\left\{(x, y) \in \mathbb{R}^{2}: a<x<b, 0<y<c\right\}$, $D_{1}=\partial Q \cap\{x=a\}, D_{2}=\partial Q \cap\{x=b\}, D_{3}=\partial Q \cap\{y=0\}$, and $D_{4}=\partial Q \cap\{y=c\}$. Consider the problem

$$
\begin{cases}\Delta u=0 & \text { in } Q, \\ u=0 & \text { on } D_{1}, D_{3} \text { i } D_{4}, \\ u=d(y) & \text { on } D_{2},\end{cases}
$$

where $d(y)$ is a given function in $[0, c]$.
(a) Give necessary conditions on d for the solution to be of class C^{2} in \bar{Q}.
(b) If $d(y)=\sin (2 \pi y / c)$, determine the sign of $u_{y}((a+b) / 2, c / 2)$ (without making any explicit computation).
[Next two questions can be done independently of having answered or not the two previous ones]
(c) For a general $d=d(y)$, find the solution using separation of variables and Fourier series.
(d) How would you solve the same problem with Dirichlet conditions on all ∂Q, that is: $u=d_{1}(y)$ on $D_{1}, u=d_{2}(y)$ on $D_{2}, u=d_{3}(x)$ on D_{3} and $u=d_{4}(x)$ on D_{4} ?

