Problem 1. We compute a discrete ideal image $u[i, j]$ using an iterative method (Jacobi or GaussSeidel), where $u[i, j]$ is the intensity of gray for the pixel at the point $p_{i j}=(i h, j h)(h>0$ is the pixel size). Being an iterative method, we have computed $u[i, j, k]$, where k represents the k-th iteration.

Find a new step \bar{h} and a new continuous variable $t=\bar{h} k$ such that the function of three variables $u\left(x_{1}, x_{2}, t\right)$ satisfies a PDE (as h and \bar{h} tend to 0). Which is this PDE when using Jacobi's method, and which is for Gauss-Seidel's method? [If necessary, check in Internet what are the Jacobi and Gauss-Seidel methods.]

Problem 2. Let $H \subset \mathbb{R}^{n}$ be a bounded regular open set such that $\bar{B}_{\varepsilon}(0)=\left\{x \in \mathbb{R}^{n}:|x| \leq \varepsilon\right\} \subset H$. Let us consider the open set $\Omega:=H \backslash \bar{B}_{\varepsilon}(0)$ and a solution $u \in C^{2}(\bar{\Omega})$ of

$$
\left\{\begin{array}{ccc}
\Delta u+a(x) u_{x_{1}}=1 & \text { in } & \Omega, \\
\frac{\partial u}{\partial \nu}=-1 & \text { on } & \partial H, \\
u=x_{2} & \text { on } & \partial B_{\varepsilon}(0),
\end{array}\right.
$$

where a continuous function in $\bar{\Omega}, \nu$ is the exterior normal vector to Ω, and $\frac{\partial u}{\partial \nu}:=\nabla u \cdot \nu$ is the directional derivative of u in the direction of ν (we call it the normal derivative of u). Find the exact value of $\max _{\bar{\Omega}} u$ and prove your answer.

Problem 3. The intensity of gray $u=u(x, y)$ of a black and white continuous image at $(x, y) \in$ $\bar{Q}=[0,1]^{2}$ satisfies the problem

$$
\begin{cases}-\Delta u+4 \lambda u=f, & (x, y) \in Q=(0,1)^{2}, \\ u=g, & (x, y) \in \partial Q,\end{cases}
$$

where $\lambda \in \mathbb{R}$ is a constant and f and g are given functions (in a neighborhood of \bar{Q} if necessary).
(i) Find the discrete version (with $m \times m$ pixels) for this problem.
(ii) Prove that the discrete problem admits a unique solution if $|\lambda|$ is small enough.
(iii) Prove that the discrete problem admits a unique solution if $\lambda>0$.
(iv) What can you say about the existence of the solution when $\lambda<0$?

