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Abstract

We approach the dynamics of a family of birational maps ϕk in di-
mension 4, using Poisson geometry tools, namely the properties of the
restrictions of the maps ϕk and their fourth iterate ϕ

(4)
k to the symplectic

leaves of an appropriate Poisson manifold (R4
+, P ). These restricted maps

are shown to belong to a group of symplectic birational maps of the plane
which is isomorphic to the semidirect product SL(2,Z) n R2. The study
of these restricted maps leads to the conclusion that there are three differ-
ent types of dynamical behaviour for ϕk characterized by the parameter
values k = 1, k = 2 and k ≥ 3.
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1 Introduction

This is a companion paper to our works [2, 5] on the dynamics of maps aris-
ing in the context of the theory of cluster algebras [6] through the notion of
mutation-periodic quivers [9] (a.k.a. cluster maps). We study the main geo-
metric features underpinning the dynamics of a family of (cluster) maps ϕk in
dimension 4, depending on a positive integer parameter k. Although most of
the dynamical behaviour of these maps is presented in our unpublished work
[4], here we approach their dynamics under a different point of view, aiming at
keeping the paper as self contained as possible and at the same time highlighting
the main geometric aspects relevant to the dynamics.
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We consider the family of maps defined in R4
+ by

ϕk(x1, x2, x3, x4) =

(
x3, x4,

xk2 + xk3
x1

,
xk1x

k
4 + (xk2 + xk3)k

xk1x2

)
, k ∈ Z+ (1)

This family is associated to a 4-node quiver which is mutation-periodic of period
2 and is a particular case of the quiver presented in [2, Figure 1, Example 4].
By definition of the maps associated to mutation periodic quivers, the maps ϕk
are birational, that is, rational maps with rational inverse.

We refer the reader interested in mutation-periodic quivers and studies of
maps associated to mutation-periodic quivers of period 1 to [9, 8, 7] and to
[11, 10] for general aspects of cluster algebras and applications.

We approach the study of the dynamics of the maps ϕk by realizing that they
are maps preserving a Poisson structure P of log-canonical type. This structure
is regular on R4

+, and the leaves of the respective symplectic foliation of R4
+

are semi-algebraic sets of dimension 2. All these symplectic leaves are invariant

under the fourth iterate ϕ
(4)
k of the maps ϕk with one leaf being invariant under

ϕk. The periodic points of the maps ϕk are then obtained by studying the

restrictions of ϕk and ϕ
(4)
k to the (invariant) symplectic leaves. This study

provides the full description of the periodic points of the family of maps (1)
and enables us to conclude that there are three different types of dynamical
behaviour according to the parameter values k = 1, k = 2 and k ≥ 3. The
identification of the periodic points of ϕk in the cases k = 1 and k ≥ 3 is
described in Theorem 3 and Theorem 4 respectively, and for k = 2 it can be
found in [3, Theorem 3]. In particular, we show that: (a) ϕ1 is globally 12-
periodic, with a unique fixed point and 2-dimensional semi-algebraic sets of
points with minimal periods 4 and 6; (b) ϕ2 has no periodic points; (c) if k ≥ 3,
ϕk has a unique fixed point and a 2-dimensional semi-algebraic set of points of
minimal period 4.

The structure of the paper is as follows. The first section recalls that each
map ϕk is a Poisson map with respect to a Poisson structure P of rank 2. We
also show that the respective symplectic foliation of R4

+ is invariant under the
fourth iterate of ϕk (Theorem 1). The following section is devoted to the study

of the restrictions of ϕk and of ϕ
(4)
k to the appropriate (invariant) symplectic

leaves of the referred foliation. It is shown that these restrictions are symplectic
birational maps of the plane belonging to a group, Γ, which is isomorphic to the
semidirect product SL(2,Z) n R2. We also find normal forms for the maps of
this group up to conjugation in GL(2,Z) n R2. The final section is devoted to
the study of the periodic points of the maps ϕk. This is accomplished by using
results of the previous section concerning the group Γ to obtain the periodic
points of the restricted maps, from which we determine the periodic points of
the maps ϕk.
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2 Reduction to globally-periodic symplectic maps

Although each map ϕk of the family (1) is defined for x1x2 6= 0, throughout the
paper we consider its domain of definition to be R4

+ which guarantees that any
iterate of these maps is well defined.

As follows from Example 4 in [2] (with r = s = k and t = 0) each map ϕk is
a Poisson map with respect to the Poisson structure

P =
∑

1≤i<j≤4

cijxixj
∂

∂xi
∧ ∂

∂xj
(2)

where the matrix C = [cij ] is the skew-symmetric matrix

C =


0 k k k2

−k 0 0 k
−k 0 0 k
−k2 −k −k 0

 . (3)

That is, for each k ∈ Z+ we have (ϕk)∗P = P , where (ϕk)∗ denotes the push-
forward by ϕk. The Poisson structure P is known as a log-canonical Poisson
structure since it is constant in logarithmic coordinates.

It can easily be checked that [cijxixj ]i,j=1,...,4 has null determinant and
consequently, in R4

+, the Poisson tensor has constant rank equal to 2, meaning
that P is a regular (degenerate) Poisson structure.

Each map ϕk is a birational Poisson map and so by Theorem 5.1 in [2] there
is a submersion Πk and a map ϕ̂k defined on R2

+ such that

Πk ◦ ϕk = ϕ̂k ◦Πk. (4)

That is, one has the commutativity of the following diagram

R4
+

Πk //

ϕk

��

R2
+

ϕ̂k

��
R4

+ Πk

// R2
+

Moreover, the submersion Πk sends R4
+ onto a maximal set of independent

Casimirs. Such a set can be easily obtained from a basis of the kernel of the
matrix C in (3). Indeed, if v = (v1, v2, v3, v4) ∈ KerC then xv := xv11 x

v2
2 x

v3
3 x

v4
4

is a Casimir (see Lemma 5.2 in [2]). Thus, considering KerC = 〈v1,v2〉 with

v1 = (1,−k, 0, 1), v2 = (0,−1, 1, 0),

we take for a maximal set of Casimirs, {x, y}, the rational functions x = xv1

and y = xv2 , that is,

x =
x1x4

xk2
, y =

x3

x2
. (5)
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The submersions Πk are then given by

Πk(x1, x2, x3, x4) =

(
x1x4

xk2
,
x3

x2

)
= (x, y). (6)

The components of the maps ϕ̂k are obtained by computing x ◦ ϕk and y ◦ ϕk
as functions of x and y. This computation gives

ϕ̂k(x, y) =

(
y(xk + (1 + yk)k)

xk
,

1 + yk

x

)
. (7)

Remark 1. We note that each Casimir is invariant under a scaling action of
the multiplicative group R2

+ on R4
+ with weights defined by the components of

vectors forming a basis of the image of the matrix C in (3). Namely, taking
ImC = 〈u1,u2〉 with u1 = (0, k, k, k2) and u2 = (−k, 0, 0, k), this scaling action
is defined by

(λ1, λ2) · (x1, x2, x3, x4) = (λ−k2 x1, λ
k
1x2, λ

k
1x3, λ

k2

1 λk2x4), (λ1, λ2) ∈ (R+)2.

However, the maps ϕk are not invariant (neither equivariant) under this scaling
action, which leaves us outside the usual Poisson reduction setting.

Another remark is worth mentioning.

Remark 2. As the Poisson structure P in (2) is regular in R4
+ all its (2-

dimensional) symplectic leaves are the common level sets of a maximal set of
independent Casimirs. However, it can be shown that the maps ϕk do not
preserve this symplectic foliation of R4

+, and therefore none of these maps is the
discrete analogue of a Hamiltonian flow.

Taking into account the above remark one might be tempted to consider
that the Poisson structure is of no relevance to the study of the dynamics of the
family of maps ϕk. However, as we will show in Theorem 1, the fourth iterate
of each map ϕk does preserve the symplectic foliation of R4

+. Hence, like in the
continuous setting, the restriction of these maps to the symplectic leaves can be
used to study the dynamics.

Theorem 1. The fourth iterate of each map ϕk in (1) preserves the symplectic
foliation of (R4

+, P ) with P the Poisson structure in (2). That is,

ϕ
(4)
k

(
Sk(p,q)

)
⊆ Sk(p,q)

where Sk(p,q) is a symplectic leaf. In particular, the Casimirs x̃ =
xk
2+xk

3

x1x4
and

y = x3

x2
are first integrals of ϕ

(4)
k , i.e.,

x̃ ◦ ϕ(4)
k = x̃, y ◦ ϕ(4)

k = y.

This theorem is a different formulation of Proposition 4 in [5]. In order to
prove it we first show the following proposition.
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Proposition 1. Let ϕ̂k be the maps in (7) defined in R2
+. Then,

(i) each map ϕ̂k is globally 4-periodic, i.e. ϕ̂
(4)
k = Id;

(ii) each map ϕ̂k is symplectic with respect to the symplectic form

ω =
1

xy
dx ∧ dy.

Proof. (i) Consider the homeomorphisms

hk(x, y) =

(
y,

1 + yk

x

)
, k ∈ Z+.

A simple computation shows that

hk ◦ ϕ̂k = ψ ◦ hk (8)

with

ψ(x, y) =

(
y,

1

x

)
. (9)

The parameter independent map ψ is globally 4-periodic (i.e. ψ(4) = Id),
and from (8) it follows

hk ◦ ϕ̂(4)
k = ψ(4) ◦ hk ⇐⇒ ϕ̂

(4)
k = Id,

where the above equivalence comes from the global periodicity of ψ and
the fact that hk is a homeomorphism.

(ii) Straightforward computations show that the maps hk and ψ preserve ω,
that is the pullback of ω by these maps is ω:

h∗kω = ω, ψ∗ω = ω.

Thus
(ϕ̂k)∗ω =

(
h−1
k ◦ ψ ◦ hk

)∗
ω = h∗k ◦ ψ∗ ◦ (h−1

k )∗ω = ω.

The symplectic leaves of (R4
+, P ) are 2-dimensional subsets of R4

+ (since the
rank of P is 2) defined by the common level set of two independent Casimirs
of P . These leaves could be defined as the fibres of the submersion Πk in (6)
but due to the previous proposition it is more convenient to consider them to
be the fibres of

πk(x) = hk ◦Πk(x) =

(
y,

1 + yk

x

)
=

(
x3

x2
,
xk2 + xk3
x1x4

)
. (10)
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We note that, since x and y are Casimirs of P then 1+yk

x is also a Casimir and
so the components of πk form a maximal set of independent Casimirs. Thus,
the symplectic leaves are given by

Sk(p,q) =
{
x ∈ R4

+ : πk(x) = (p, q)
}

=
{
x ∈ R4

+ : x3 = px2, qx1x4 = (1 + pk)xk2
}

(11)

with (p, q) ∈ R2
+.

Proof of Theorem 1. From (4) and (8) one has

Πk ◦ ϕk = ϕ̂k ◦Πk ⇐⇒ hk ◦Πk ◦ ϕk = ψ ◦ hk ◦Πk ⇐⇒ πk ◦ ϕk = ψ ◦ πk (12)

with πk the map (10) and ψ as in (9). The last equivalence implies

πk ◦ ϕ(4)
k = ψ(4) ◦ πk ⇐⇒ πk ◦ ϕ(4)

k = πk

where we used the fact that ψ(4) = Id (see Proposition 1-(i)). Thus, if x ∈ Sk(p,q)
one has πk(x) = (p, q), and again from the last equivalence,

πk ◦ ϕ(4)
k (x) = πk(x) = (p, q),

meaning that ϕ
(4)
k (x) ∈ Sk(p,q).

Note that the components of πk are Casimirs of P , therefore the fact that

the Casimirs are first integrals of ϕ
(4)
k is just a consequence of the identity above.

3 Restrictions to symplectic leaves and the group
of symplectic birational maps of the plane

The symplectic leaves Sk(p,q) defined by (11) are two dimensional semi-algebraic

sets invariant under ϕ
(4)
k . However, there are symplectic leaves which are in-

variant under a lower order iterate of ϕk. Indeed, from (4) and (8) one has

πk ◦ ϕ(n)
k = ψ(n) ◦ πk, n ∈ Z+

from which it follows that the symplectic leaves Sk(p,q) = π−1
k (p, q) are invariant

under ϕ
(n)
k if and only if (p, q) is an n-periodic point of ψ.

A point fixed by the nth iterate of a function and not fixed by any other
lower order iterate will be called a point of minimal period n.

In R2
+, the map ψ has a unique fixed point (1, 1) and any other point is peri-

odic of minimal period 4. So one has the following invariance of the symplectic
leaves:

• Sk(1,1) is invariant under ϕk;
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• for any (p, q) 6= (1, 1), Sk(p,q) is invariant under ϕ
(4)
k and not invariant under

any lower order iterate of ϕk.

The expressions of the restriction of ϕk to Sk(1,1) and of the restriction of

ϕ
(4)
k to Sk(p,q) are given in the following proposition.

Proposition 2. Let ϕk be the maps (1) and Sk(p,q) the 2-dimensional symplectic

leaves defined by (11). Then,

1. Sk(1,1) is invariant under ϕk and in the coordinates (x1, x2), the restriction
ϕ̄k = ϕk

Sk
(1,1)

is given by:

ϕ̄k(x1, x2) =

(
x2, 2

xk2
x1

)
. (13)

2. if (p, q) 6= (1, 1) the symplectic leaves Sk(p,q) are invariant under ϕ
(4)
k and

the restriction ϕ̃k = ϕ
(4)
k Sk

(p,q)

is given, in the coordinates (x1, x4), by

ϕ̃k(x1, x4) =

(
λ
xk

2−2
4

x1
, λk

2−1x
(k2−3)(k2−1)
4

xk
2−2

1

)
, (14)

with

λ =
(1 + pk)2(1 + qk)k

q2pk
. (15)

Proof. As seen previously the invariance properties of the symplectic leaves
follows from the type of periodic points of the map ψ in (9). Straightforward
computations lead to the expressions of the restricted map in (13). To obtain

ϕ̃k, the computation of ϕ
(4)
k (x1, x2, x3, x4) = (u1, u2, u3, u4) gives

u1 = l(x)
xk

2−2
4

x1
, u2 = lk(x)

x2x
k3−3k
4

xk1
,

u3 = lk(x)
x3x

k3−3k
4

xk1
, u4 = lk

2−1(x)
x

(k2−3)(k2−1)
4

xk
2−2

1

,

where

l(x) =
(xk1x

k
4 + (xk2 + xk3)k)k

xk
2−2

1 xk2x
k
3x

k2−2
4

. (16)

It is easy to see that the function l is constant on each Sk(p,q) and given by

λ = l(x)
Sk
(p,q)

=
(1 + pk)2(1 + qk)k

q2pk
.

This leads directly to the expression of ϕ̃k in the coordinates (x1, x4).
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Remark 3. In the above proposition, the different choice of coordinates for
Sk(1,1) and for Sk(p,q) has no particular meaning other than leading in each case
to simpler expressions of the restricted maps.

Using the expressions of the restricted maps (13)-(14) one easily verifies that
they are maps of the plane preserving the symplectic form

ω =
1

xy
dx ∧ dy. (17)

The fact that these maps are symplectic is not a coincidence since: (i) the sym-
plectic structure on a symplectic leaf S is the nondegenerate Poisson structure
induced from P , meaning that the inclusion i : S → R4

+ is a Poisson map; (ii)

ϕk is a Poisson map, and so is any iterate ϕ
(n)
k ; (iii) the restricted maps are just

the composition ϕ
(n)
k S

= ϕ
(n)
k ◦ i and so they are Poisson maps preserving the

symplectic structure on S induced from P .

The restricted maps in (13)-(14) belong to the group of birational maps
preserving the symplectic form (17). Namely, the group of maps of the form

f(x, y) =
(
αxayb, βxcyd

)
,

with α and β nonzero constants and a, b, c, d integers satisfying ad− bc = 1.
Using algebraic geometry techniques, it was proved by Blanc in [1] that the

group of birational transformations of C2 preserving the symplectic form (17)
is generated by SL(2,Z), the complex torus (C∗)2 and the globally 5-periodic
(Lyness) map (x, y) 7→ (y, 1+y

x ). Here we consider this group restricted to R2
+

and we will denote it by Γ.

Let Γ be the group of maps f : R2
+ → R2

+ defined by

f(x, y) =
(
αxayb, βxcyd

)
, α, β ∈ R+, ad− bc = 1, a, b, c, d ∈ Z. (18)

Using logarithmic coordinates, we can show that Γ is isomorphic to the semidi-
rect product SL(2,Z) n R2. Namely, considering the map i : R2

+ −→ R2 given
by

i(x, y) = (log x, log y), (19)

this map conjugates f ∈ Γ to the affine map in R2:

g(u, v) = (au+ bv + logα, cu+ dv + log β).

Note that g is the composition of the translation by the vector v = (logα, log β)
and an area preserving linear map represented by the SL(2,Z) matrix

M =

[
a b
c d

]
, ad− bc = 1, a, b, c, d ∈ Z. (20)

8



Identifying g with (M,v), the map i induces an isomorphism between Γ and
the semidirect product

SL(2,Z) nR2 = {(M,v) : M ∈ SL(2,Z),v ∈ R2}

with group multiplication defined by (M,v) · (N,w) = (MN,v +Mw).
Let us recall some facts about the special linear group, SL(2,Z), over the

integers. The elements of SL(2,Z) are classified into elliptic, parabolic and
hyperbolic according to the values of the trace of the matrix M ∈ SL(2,Z).
Namely,

• If |tr(M)| < 2, then M is called elliptic, and is conjugate to a rotation.

• If |tr(M)| = 2, then M is called parabolic, and is a shear map.

• If |tr(M)| > 2, then M is called hyperbolic.

In order to better identify the type of periodic points of the restricted maps
in Proposition 2 we deduce in the next proposition a normal form for all the
maps in Γ except the maps

f±(α,β)(x, y) = (αx±1, βy±1).

Proposition 3. Let f : R2
+ → R2, defined by

f(x, y) =
(
αxayb, βxcyd

)
, ad− bc = 1 α, β 6= 0

be an element of Γ with b2 + c2 6= 0. Then f is conjugate to the map:

1. fa+d(x, y) = (y, y
a+d

x ), if a+ d 6= 2;

2. f2,ξ(x, y) = (y, ξ y
2

x ), if a+ d = 2, where

ξ =


αc

βa−1
, if c 6= 0

βb, if c = 0.
(21)

Proof. If c 6= 0, considering the homeomorphism π given by

π(x, y) = (yax−c, βaα−cy),

it is easy to check that π ◦ f = g ◦ π, where g is the map

g(x, y) = (y,K
ya+d

x
) with K = β(βaα−c)1−(a+d).

If a+ d = 2 the map g is the map f2,ξ with ξ = αc

βa−1 . If a+ d 6= 2, taking the
following map Π

Π(x, y) = K
1

a+d−2 (x, y),
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we have Π ◦ g = fa+d ◦Π, that is Π ◦ π ◦ f = fa+d ◦Π ◦ π.
If c = 0, the hypothesis b2 + c2 6= 0 implies that b 6= 0. Considering the

involution σ(x, y) = (y, x), which interchanges c and b, the problem reduces to
the previous cases. In fact, σ ◦ f ◦ σ =

(
βxd, αxbya

)
is conjugate to fa+d if

a+ d 6= 2 and to f2,ξ with ξ = βb

αd−1 = βb if a+ d = 2.

Remark 4. It is worth noting that the conjugacies in the proof of the above
proposition belong to a group G which is isomorphic to GL(2,Z) n R2. The
result in the proposition may be rephrased as follows. Up to conjugation in G,
the elements (M,v) ∈ SL(2,Z) n R2, with M 6= ±I, are parametrized: (a) by
the trace of M if tr M 6= 2; (b) by a real parameter ξ depending on M and v
through the expression (21), in the case of tr M = 2.

As a consequence of the proof of Proposition 3 the restricted maps (13) and
(14) are conjugate to the normal forms given in the following corollary.

Corollary 2. Let k ∈ Z+ and λ be a nonzero real number. Consider the maps

ϕ̄k(x, y) =

(
y, 2

yk

x

)
, ϕ̃k(x, y) =

(
λ
yk

2−2

x
, λk

2−1 y
(k2−3)(k2−1)

xk2−2

)
.

1. If k = 2, then

i) ϕ̄2 is already in normal form: ϕ̄2 = f2,2;

ii) π̃2 ◦ ϕ̃2 = f2,λ4 ◦ π̃2 with

π̃2(x, y) =

(
x2

y
,
y

λ

)
, f2,λ4(x, y) =

(
y, λ4 y

2

x

)
. (22)

2. If k 6= 2 then,

i) π̄k ◦ ϕ̄k = fk ◦ π̄k with

π̄k(x, y) = 2
1

k−2 (x, y), fk(x, y) =

(
y,
yk

x

)
; (23)

ii) π̃k ◦ ϕ̃k = f(k2−2)2−2 ◦ π̃k with

π̃k(x, y) = λ
1

k2−4

(
λ
xk

2−2

y
, y

)
,

f(k2−2)2−2(x, y) =

(
y,
y(k2−2)2−2

x

)
. (24)

Proof. Note that both maps ϕ̄k and ϕ̃k verify the hypotheses of Proposition 3
with c 6= 0, for any k. Furthermore, a+ d = k for ϕ̄k and a+ d = (k2 − 2)2 − 2
for ϕ̃k. For both maps a + d = 2 if and only if k = 2. The result then follows
from the proof of Proposition 3.

10



Remark 5. We remark that from the proof of the above corollary the restricted
maps ϕ̄k and ϕ̃k are conjugate to SL(2,Z) maps except in the case k = 2.
Moreover: (a) |a+ d| = 1 if and only if k = 1, so that ϕ̄1 and ϕ̃1 are conjugate
to elliptic SL(2,Z) maps; (b) |a+ d| > 2 if and only if k ≥ 3, and so ϕ̄k and ϕ̃k
are conjugate to hyperbolic SL(2,Z) maps for k ≥ 3.

For future reference, we now mention the form of an iterate of order n of

the maps f2,ξ(x, y) = (y, ξ y
2

x ), given in Proposition 3-2. This expression can
be computed by applying Lemma 1 in [3] or by considering the conjugate affine
map

g2,ξ(u, v) = (v,−u+ 2v + log ξ), ξ ∈ R+.

This map can be identified with the SL(3,R) matrix

X =

 0 1 0
−1 2 log ξ
0 0 1

 ,
and so, computing the nth power of X we arrive at the expression of g

(n)
2,ξ from

which we obtain:

f
(n)
2,ξ (x, y) = ξ

n(n−1)
2

yn

xn
(x, ξny) , n ≥ 0. (25)

4 Periodic Points of the maps ϕk

The existence of periodic points for the maps of the family ϕk given by (1)
is obtained from the periodic points of the maps restricted to the symplectic
leaves, namely the maps ϕ̄k and ϕ̃k in Proposition 2. In turn, the existence
of periodic points of these restricted maps rely on the results of the previous
section for the group Γ.

4.1 Periodic points of the restricted maps

In this subsection we describe the type of periodic points of the restricted maps
according to the values of the parameter k.

Proposition 4. Let Sk(p,q) ⊆ R2
+ be the symplectic leaves defined by (11) and

ϕ̄k, ϕ̃k the restrictions

ϕ̄k = ϕk
Sk
(1,1)

, ϕ̃k = ϕ
(4)
k Sk

(p,q)

, (p, q) 6= (1, 1)

given by (13)-(15). The periodic points of these maps are as follows.

1. For k = 1:

(i) in S1
(1,1), the map ϕ̄1 has a unique fixed point (2, 2) and any other

point is periodic of minimal period 6.
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(ii) in S1
(p,q), (p, q) 6= (1, 1), the map ϕ̃1 has a unique fixed point (λ1/3, λ1/3)

and any other point is periodic of minimal period 3.

2. For k = 2, the maps ϕ̄2 and ϕ̃2 have no periodic points.

3. For k ≥ 3:

(i) in Sk(1,1), the map ϕ̄k has a unique fixed point (2
1

2−k , 2
1

2−k ) and no
other periodic points.

(ii) in Sk(p,q), (p, q) 6= (1, 1), the map ϕ̃k has a unique fixed point (λ
1

4−k2 , λ
1

4−k2 )
and no other periodic points.

Proof. 1. From Corolary 2-2, both maps ϕ̄1 and ϕ̃1 are conjugate to elliptic
SL(2,Z) maps. The map ϕ̄1 is conjugate to f1(x, y) =

(
y, yx

)
which is a

globally 6-periodic map with a unique fixed point (1, 1). So, ϕ̄1 is globally
6-periodic with a unique fixed point (2, 2). Analogously, the map ϕ̃1 is

conjugate to f−1(x, y) =
(
y, 1

xy

)
which is a globally 3-periodic map with

a unique fixed point (1, 1). Hence, ϕ̃1 is globally 3-periodic with a unique
fixed point (λ1/3, λ1/3).

2. First note that by Corollary 2-1 the maps ϕ̄2 and ϕ̃2 are conjugate to f2,2

and f2,λ4 respectively, with

ϕ̄2(x, y) = f2,2(x, y) =

(
y, 2

y2

x

)
, ϕ̃2 = π̃−1

2 ◦ f2,λ4 ◦ π̃2.

Using (25) with ξ = 2 one has

ϕ̄
(n)
2 (x, y) = 2

n(n−1)
2

(
yn

xn−1
,

2nyn+1

xn

)
,

from which the result follows.

By noting that ϕ̃
(n)
2 = π̃−1

2 ◦ f
(n)
2,λ4 ◦ π̃2, applying again (25) to obtain f

(n)
2,λ4

and taking into account that

π̃2(x, y) =

(
x2

y
,
y

λ

)
, π̃−1

2 (x, y) =
(√

λxy, λy
)

and that λ =
(
p+ 1

p

)2 (
q + 1

q

)2

> 1, it is easy to see from the expression

of ϕ̃
(n)
2 that ϕ̃2 has no periodic points.

3. For k ≥ 3, from Corollary 2-2, both ϕ̄k and ϕ̃k are conjugate, respectively,
to the SL(2,Z) hyperbolic maps

fk(x, y) =

(
y,
yk

x

)
and f(k2−2)2−2(x, y) =

(
y,
y(k2−2)2−2

x

)
.
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Note that (k2 − 2)2 − 2 > 2 when k ≥ 3. Therefore, as fk and f(k2−2)2−2

have no periodic points other than the fixed point, the same happens for
the maps ϕ̄k and ϕ̃k. The computation of the fixed points of ϕ̄k and ϕ̃k
gives the result.

4.2 Periodic points of ϕk

Finally, we address the problem of describing the main dynamical features of
the maps of the family (1) defined in R4

+. Recall that, by Theorem 1, R4
+

is foliated by 2-dimensional symplectic leaves Sk(p,q) of P (with P as in (2)),

all of them invariant under the the fourth iterate ϕ
(4)
k and with the leaf Sk(1,1)

invariant under ϕk. In particular, this means that each orbit of ϕk is either
entirely contained in Sk(1,1) or jumps between four pairwise disjoint symplectic
leaves

Sk(p,q) → Sk(q,p−1) → Sk(p−1,q−1),→ Sk(q−1,p)

all of them invariant under ϕ
(4)
k . In fact, the leaves Sk(p,q) are the fibres of πk

and by (12) one has πk ◦ ϕk = ψ ◦ πk with ψ(x, y) =
(
y, 1

x

)
. So,

Sk(p,q)
ϕk−→ Skψ(p,q).

In Theorem 3 and Theorem 4 below we will characterize the periodic points
of ϕk in the cases k = 1 and k ≥ 3, respectively. The case k = 2 will not be
explicitly stated since it is easy to see that the map ϕ2 has no periodic points
and its dynamics is described in detail in our work [3, Theorem 3].

Theorem 3. Let ϕ1 : R4
+ → R4

+ be the map of the family (1):

ϕ1(x1, x2, x3, x4) =

(
x3, x4,

x2 + x3

x1
,
x1x4 + x2 + x3

x1x2

)
and consider the symplectic foliation of R4

+ defined by (11) with

S1
(p,q) =

{
x ∈ R4

+ : x3 = px2, qx1x4 = (1 + p)x2

}
.

1. The map ϕ1 is globally 12-periodic.

2. In the symplectic leaf S1
(1,1) there is exactly one fixed point F = (2, 2, 2, 2)

of ϕ1 and any other point of S1
(1,1) is periodic of minimal period 6.

3. Each symplectic leaf S1
(p,q), with (p, q) 6= (1, 1), contains a 2-dimensional

semi-algebraic set

V = {(x1, x2, x3, x4) ∈ R4
+ : x4 = x1, x1x2x3 = x2

1 + x2 + x3},

of points of minimal period 4 and any other point in S1
(p,q) \ V is periodic

with minimal period 12.
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Proof. By Proposition 4-1, the restriction ϕ̄1 of ϕ1 to S1
(1,1) is globally 6-periodic

and the restriction ϕ̃1 of ϕ
(4)
1 to any S1

(p,q) is globally 3-periodic. Hence ϕ1 is

globally 12-periodic. Moreover, all the points in S1
(1,1) have minimal period 6

except the point F = (2, 2, 2, 2) which is fixed. Also, any point belonging to

S1
(p,q) is either a fixed point of ϕ

(4)
1 or a periodic point of ϕ

(4)
1 with minimal

period 3.

To compute the fixed points of ϕ
(4)
1 , which correspond to periodic points of

ϕ1 with minimal period 4, we note that by Proposition 4-1 and Proposition 2
these are points x ∈ S1

(p,q) whose coordinates x1 and x4 satisfy x1 = x4 = λ1/3,

for λ given by (15) (with k = 1). On the other hand, the constant λ is the value
of the restriction to S1

(p,q) of the function l(x) given in (16). To obtain the set
V it is enough to eliminate λ from these relations, that is from

x1 = x4 = λ1/3, λ =
x1x4 + x2 + x3

x−1
1 x2x3x

−1
4

.

Finally, the remaining points are periodic points of ϕ
(4)
1 with minimal period 3,

and therefore they are periodic points of ϕ1 with minimal period 12.

Theorem 4. For each integer k ≥ 3, let ϕk : R4
+ → R4

+ be the map

ϕk(x1, x2, x3, x4) =

(
x3, x4,

xk2 + xk3
x1

,
xk1x

k
4 + (xk2 + xk3)k

xk1x2

)
and the symplectic leaves

Sk(p,q) =
{
x ∈ R4

+ : x3 = px2, qx1x4 = (1 + pk)xk2
}
.

Then, ϕk has no periodic points other than:

1. a unique fixed point F = (2
1

2−k , 2
1

2−k , 2
1

2−k , 2
1

2−k ) belonging to Sk(1,1).

2. each leaf Sk(p,q), with (p, q) 6= (1, 1), contains a semi-algebraic set V ⊂
Sk(p,q) of periodic points of ϕk with minimal period 4 given by

V =
{

(x1, x2, x3, x4) ∈ R4
+ : x4 = x1, x

k
1x2x3 = x2k

1 +
(
xk2 + xk3

)k}
.

Proof. The proof follows the same lines of the proof of the previous theorem
by considering the periodic points of the restriction ϕ̄k of ϕk to Sk(1,1) and the

restrictions ϕ̃k of ϕ
(4)
k to each Sk(p,q) with (p, q) 6= (1, 1). By Proposition 2 the

restriction ϕ̄k is given in the coordinates (x1, x2) by (13) and ϕ̃k is given in the
coordinates (x1, x4) by (14).

By Proposition 4-3-(i), ϕ̄k has a unique fixed point (x1, x2) = (2
1

2−k , 2
1

2−k )
and no other periodic points. This fixed point corresponds to the fixed point

F = (2
1

2−k , 2
1

2−k , 2
1

2−k , 2
1

2−k ) of ϕk. Also, by Proposition 4-3-(ii), for each
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(p, q) 6= (1, 1) the restriction ϕ̃k of ϕ
(4)
k to Sk(p,q) has a unique fixed point

(x1, x4) = (λ
1

4−k2 , λ
1

4−k2 ) and no other periodic points. Each of these fixed
points corresponds to a periodic point of ϕk with minimal period 4.

The full set of these 4-periodic points is a 2-dimensional set V ⊂ Sk(p,q). Like
in the proof of the previous theorem, the explicit form of V is easily obtained

from the fact that the fixed point of ϕ̃k satisfies x1 = x4 = λ
1

4−k2 and from the
fact that λ is the value of the restriction to Sk(p,q) of the function l(x) given in

(16).
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