2º TESTE DE ÁLGEBRA LINEAR

 1° semestre 2019/20 - 14/11/2019 - Curso: MEEC

Nome:	
Número:	
Curso:	
Sala:	

	1	2	3
(A)			
B)			
(C)			
D)			

O Teste que vai realizar tem a duração de **45 minutos** e consiste de 4 problemas. Os 3 primeiros são de escolha múltipla; cada resposta certa vale 10/3 valores, cada resposta em branco vale 0, e cada resposta errada vale -1/3 da cotação dessa pergunta. O último problema não é de escolha múltipla e a cotação figura na última tabela desta página. Nesta parte deve justificar as suas respostas e apresentar todos os cálculos que efectuar.

Para os 3 primeiros problemas, marque com \times as suas escolhas na tabela anexa.

Problema 1: Considere em \mathbb{R}^3 a base ordenada B=((1,1,-1),(1,2,1),(1,3,1)). Como se representa na base canónica o vector $v=(2,1,-2)_B$, ou seja o elemento de \mathbb{R}^3 que tem (2,1,-2) como vector das componentes na base B?

A)
$$(1, -2, 3)$$
, **B)** $(3, 2, -1)$, **C)** $(2, 3, -1)$, **D)** $(1, -2, -3)$.

Problema 2: Sendo $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - 3z = 0\}$ e $U = L(\{(1, 1, 1), (-1, 2, 1), (2, 5, 4)\})$, pretende-se determinar o par (a, b) com $a = \dim(S + U)$ e $b = \dim(S \cap U)$. Qual é?

A)
$$(2,2)$$
; **B)** $(2,1)$; **C)** $(3,2)$; **D)** $(3,1)$.

Problema 3: Supondo que $T: \mathbb{R}^4 \to \mathbb{R}^4$ é a transformação linear que é representada na base canónica pela matriz U (definida no Problema 4) qual é o vector T(1,3,-2,0)?

A)
$$(0,1,-3,2)$$
; **B)** $(0,3,-2,-3)$; **C)** $(0,-2,1,-1)$; **D)** $(0,-3,3,0)$.

Nesta parte justifique todas as respostas e apresente os cálculos que efectuar.

Problema 4: 1. Determine, justificando, uma base para cada um dos subespaços: (i) núcleo de U e (ii) espaço das colunas de U; 2. Sendo $S = \{(x,y,z,w) \in \mathbb{R}^3 : x+y-z-w=0\}$: (a) identifique uma base de S e represente o vector (1,1,1,1) nessa base; (b) Seja $T:S \to \mathbb{R}^3$ a transformação linear tal que $T(s_1)=(1,1,1),\ T(s_2)=(1,-1,0),\ U=\begin{bmatrix} 1\\3\\1\\1\end{bmatrix}$

$$U = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 3 & 1 & 4 & 7 \\ 1 & 2 & 3 & -1 \\ -1 & -2 & -3 & 1 \end{bmatrix}$$

Qual é a representação matricial de T nas bases B_S de S e canónica de \mathbb{R}^3 ? Calcule T(1,1,1,1).

Os quadros abaixo destinam-se à correcção da prova. Por favor, não escreva nada.

Número de respostas certas	
Número de respostas erradas	

Nota da Escolha Múltipla	
Problema 4 (10,0 Val.)	
1) 4,0; 2a) 3,0; 2b) 3,0	-
TOTAL	