3° TESTE DE ÁLGEBRA LINEAR

 1° semestre 2018/19 - 15/12/2018 - Cursos: MEEC

Nome:		
Número: Curso: Sala: Sala: A) B) C) C)	O Teste que vai realizar tem a duração de 90 minutos e o de 7 problemas. Os 5 primeiros são de escolha múltipla resposta certa vale 2 valores, cada resposta em branco va cada resposta errada vale -1/3 da cotação dessa pergunta. O últimos problemas não são de escolha múltipla e as cotações nas tabelas abaixo. Nesta parte deve justificar as suas respapresentar todos os cálculos que efectuar. Para os 5 primeiros problemas, marque com X as suas escondidad de companyo d	a; cada de 0, e Os dois figuram postas e
D)	tabela à esquerda.	
Os quadros abaixo destinam-se à correcção da prova. Por favor, não escreva nada.		
	Nota da Escolha Múltipla	
Número de respostas certas	Problema 6 - 5,0 Val.(1,5+1,5+1,0+1,0)	
Número de respostas erradas		
	TOTAL	
transformação linear $T: \mathcal{P}_2$ – então $Tp = (p_1 + 2p_2, 2p_0 + 4p_1)$ afirmações: 1. T é injectiva, 2. dim $I(T)$ =	spaço linear real dos polinómios de grau menor ou igual a doi $\rightarrow \mathbb{R}^4$ definida como se segue: sendo $p(t) = p_0 + p_1 t + p_2 t^2, t$ $+ 3p_2, -p_0 + 2p_1 + p_2, p_0 - 2p_1 + 5p_2$). Considere ainda as segue: 3, 3. T é sobrejectiva, 4. dim $N(T) = 1$. dadeiras: A) 1 e 2; B) 1 e 3; C) 2 e 4; D) 3 e 4.	$\in \mathbb{R},$
ortogonal ao vector $(1, 1, -1)$.	intes conjuntos é uma base ortogonal para o subespaço de \mathbb{R}^3 o $\{(1,1,2),(1,1,-1)\}$, C) $\{(1,1,2),(-1,1,0)\}$, D) $\{(-1,1,0),(1,2)\}$	

Problema 3: Sejam V um espaço euclideano de dimensão $n \in \mathbb{N}$ com n par e S um subespaço de V. Considere uma transformação $T \in L(V)$ tal que $T(S) = S^{\perp}$. Qual das seguintes afirmações é verdadeira para qualquer subespaço S e transformação $T \in L(V)$ nas condições mencionadas ?

A) dim S > n/2, **B)** dim $S \ge n/2$, **C)** dim $S \le n/2$, **D)** dim S < n/2.

Problema 4: Considere o espaço euclideano \mathbb{R}^3 munido do produto interno usual, e seja S o subespaço de \mathbb{R}^3 definido por $S = \{(x, y, z) : -x + y - z = 0\}$. e P^{\perp} a projecção ortogonal de \mathbb{R}^3 sobre S^{\perp} . Qual das seguintes representa P^{\perp} em relação base canónica de \mathbb{R}^3 ?

sobre
$$S^{\perp}$$
. Qual das seguintes representa P^{\perp} em relação base canónica de \mathbf{R}^3 ?

A) $\frac{1}{3} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$, **B**) $\frac{1}{3} \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, **C**) $\frac{1}{3} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$, **D**) $\frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

Problema 5: Sabe-se que a matriz real $A \in \mathbb{R}^{3\times 3}$ tem 3 valores próprios distintos, todos números naturais, e dá origem por eliminação de Gauss a uma matriz triangular superior, sendo os elementos da diagonal principal 6, 2 e 2.

Apenas um dos seguintes pode ser o conjunto dos valores próprios de A; identifique-o:

A)
$$\{2,3,4\}$$
, **B)** $\{1,3,5\}$, **C)** $\{2,3,5\}$, **D)** $\{2,4,6\}$.

Nesta parte justifique todas as respostas e apresente os cálculos que efectuar.

Problema 6: Sendo $S = L(\{(0, 1, -1, 0), (2, -5, 3, 0), (1, -1, -3, -3)\}) \subset \mathbb{R}^4$, identifique uma base ortogonal de S.

- b) Determine uma base ortogonal de \mathbb{R}^4 que contenha a base de S anterior e obtenha a representação do vector v=(1,2,1,2) na forma v=y+z com $y\in S$ e $z\in S^\perp$.
- c) Qual é a equação cartesiana do plano $\{v\} + S$.
- d) Pretende-se mostrar que o recíproco do Teorema de Pitágoras: "se, para quaisquer x, y no espaço euclideano V, se tem $||x+y||^2 = ||x||^2 + ||y||^2$, então $x \perp y$ " é válido num espaço real, mas não num espaço complexo (dê pelo menos um contra-exemplo).

......

Nesta parte justifique todas as respostas e apresente os cálculos que efectuar.

Problema 7: Considere a transformação $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ definida por

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=\left[\begin{array}{cc}-d&c\\b&-a\end{array}\right],\quad a,b,c,d\in\mathbb{R}.$$

- a) Mostre que T é uma transformação linear e determine a sua representação matricial em relação à base canónica de $\mathbb{R}^{2\times 2}$: $\mathcal{B}_c = (E_{11}, E_{12}, E_{21}, E_{22})$.
- b) Calcule o polinómio característico e identifique os valores próprios T.
- c) Determine os espaços próprios de T; T é diagonalizável? T é invertível?
- d) Seja V um espaço linear de dimensão finita e não nula, $T \in L(V)$. Mostre o o chamado polinómio característico de T é, de facto, uma característica de T e não depende da representação matricial de T considerada.